Истории успеха

Элементы теории массового обслуживания. Сравнительный анализ эффективности простейших систем массового обслуживания К показателям эффективности использования смо относятся

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Курсовой проект

Сравнительный анализ эффективности простейши х систем массового обслуживания

Введение

массовый обслуживание производительность

В производственной деятельности и повседневной жизни часто возникают ситуации, когда появляется крайне важность в обслуживании требований или заявок поступающих в систему. Часто встречаются ситуации, в которых крайне важно пребывать в ситуации ожидания. Примерами тому может служить очередь покупателей у касс большого магазина, группа пассажирских самолетов, ожидающих разрешения на взлет в аэропорте, ряд вышедших из строя станков и механизмов, поставленных в очередь для починки в ремонтном цехе предприятия и т.д. Иногда системы обслуживания обладают ограниченными возможностями для удовлетворения спроса, и это приводит к образованию очередей. Как правило, ни время возникновения потребностей в обслуживании, ни продолжительность обслуживания заранее не известны. Избежать ситуации ожидания чаще всего не удается, но можно сократить время ожидания до какого-то терпимого предела.

Предметом теории массового обслуживания являются системы массового обслуживания (СМО). Задачами теории массового обслуживания являются анализ и исследование явлений, возникающих в системах обслуживания. Одна из базовых задач теории заключается в определении таких характеристик системы, которые обеспечивают заданное качество функционирования, к примеру, минимум времени ожидания, минимум средней длины очереди. Цель изучения режима функционирования обслуживающей системы в условиях, когда фактор случайности является существенным, контролировать некоторые количественные показатели функционирования системы массового обслуживания. Такими показателями, в частности являются среднее время пребывания клиента в очереди или доля времени, в течение которой обслуживающая система простаивает. При этом в первом случае мы оцениваем систему с позиции «клиента», тогда как во втором случае мы оцениваем степень загруженности обслуживающей системы. Путем варьирования операционными характеристиками обслуживающей системы может быть достигнут разумный компромисс между требованиями «клиентов» и мощностью обслуживающей системы.

1. Теоретическая часть

1.1 Классификация СМО

Системы массового обслуживания (СМО) классифицируются по разным признакам, что подробно изображено на рисунке 1.1.

Рисунок 1.1. Классификация СМО

По числу каналов обслуживания (n) СМО разделяются на одноканальные (n = 1) и многоканальные (n > 2). К одноканальным СМО в торговле можно отнести практически любой вариант локального обслуживания, например выполняемый одним продавцом, товароведом, экономистом, торговым аппаратом.

В зависимости от взаимного расположения каналов системы подразделяются на СМО с параллельными и с последовательными каналами. В СМО с параллельными каналами входной поток заявок на обслуживание является общим, и поэтому заявки в очереди могут обслуживаться любым свободным каналом. В таких СМО очередь на обслуживание можно рассматривать как общую.

В многоканальной СМО с последовательным расположением каналов каждый канал может рассматриваться как отдельная одноканальная СМО, или фаза обслуживания. Очевидно, выходной поток обслуженных заявок одной СМО является входным потоком для последующей СМО.

В зависимости от характеристик каналов обслуживания многоканальные СМО подразделяются на СМО с однородными и неоднородными каналами. Отличие состоит в том, что в СМО с однородными каналами заявка может обслуживаться любым свободным каналом, а в СМО с неоднородными каналами отдельные заявки обслуживаются только специально для этой цели предназначенными каналами, например кассы для оплаты одного-двух предметов в универсаме.

В зависимости от возможности образования очереди СМО подразделяются на два основных типа: СМО с отказами обслуживания и СМО с ожиданием (очередью) обслуживания.

В СМО с отказами возможен отказ в обслуживании, если все каналы уже заняты обслуживанием, а образовывать очередь и ожидать обслуживания нельзя. Примером такой СМО является стол заказов в магазине, в котором прием заказов осуществляется по телефону.

В СМО с ожиданием, если заявка находит все каналы обслуживания занятым, то она ожидает, пока не освободится хотя бы один из каналов.

СМО с ожиданием подразделяются на СМО с неограниченным ожиданием или с неограниченной очередью lоч и временем ожидания Точ и СМО с ограниченным ожиданием, в которых накладываются ограничения или на максимально возможную длину очереди (max lоч = m), или на максимально возможное время пребывания заявки в очереди (max Точ = Тогр), или на время работы системы.

В зависимости от организации потока заявок СМО подразделяются на разомкнутые и замкнутые.

В разомкнутых СМО выходной поток обслуженных заявок не связан с входным потоком заявок на обслуживание. В замкнутых СМО обслуженные заявки после некоторой временной задержки Тз снова поступают на вход СМО и источник заявок входит в состав СМО. В замкнутой СМО циркулирует одно и то же конечное число потенциальных заявок, например, посуда в столовой - через торговый зал, мойку и раздачу. Пока потенциальная заявка циркулирует и не преобразовалась на входе СМО в заявку на обслуживание, считается, что она находится в линии задержки.

Типовые варианты СМО определяются также и установленной дисциплиной очереди, которая зависит от преимущества в обслуживании, т.е. приоритета. Приоритет отбора заявок на обслуживание может быть следующий: первый пришел - первый обслужен; последний пришел - первый обслужен; случайный отбор. Для СМО с ожиданием и обслуживанием по приоритету возможны следующие виды: абсолютный приоритет, например для сотрудников контрольно-ревизионного управления, министра; относительный приоритет, например для директора торга на подведомственных ему предприятиях; специальные правила приоритета, когда обслуживание заявок оговорено в соответствующих документах. Существуют и другие типы СМО: с поступлением групповых заявок, с каналами разной производительности, со смешанным потоком заявок.

Совокупности СМО разных типов, объединенные последовательно и параллельно, образуют более сложные структуры СМО: секции, отделы магазина, универсама, торговой организации и т.п. Такое моделирование позволяет выявить существенные связи в торговле, применить методы и модели теории массового обслуживания для их описания, оценить эффективность обслуживания и разработать рекомендации по его совершенствованию.

1.2 Примеры СМО

Примерами СМО могут служить:

­ телефонные станции;

­ ремонтные мастерские;

­ билетные кассы;

­ справочные бюро;

­ магазины;

­ парикмахерские.

Как своеобразные системы массового обслуживания могут рассматриваться:

­ информационно-вычислительные сети;

­ операционные системы электронных вычислительных машин;

­ системы сбора и обработки информации;

­ автоматизированные производственные цехи, поточные линии;

­ транспортные системы;

­ системы противовоздушной обороны.

Близкими к задачам теории массового обслуживания являются многие задачи, возникающие при анализе надежности технических устройств.

Случайный характер, как потока заявок, так и длительности обслуживания приводит к тому, что в СМО будет происходить какой-то случайный процесс. Чтобы дать рекомендации по рациональной организации этого процесса и предъявить разумные требования к СМО, необходимо изучить случайный процесс, протекающий в системе, описать его математически. Этим и занимается теория массового обслуживания.

Заметим, что область применения математических методов теории массового обслуживания непрерывно расширяется и все больше выходит за пределы задач, связанных с обслуживающими организациями в буквальном смысле слова.

Число моделей систем (сетей) обслуживания, используемых на практике и изучающихся в теории, очень и очень велико. Даже для того, чтобы описать схематично основные их типы, требуется не один десяток страниц. Мы рассмотрим только системы с очередью. При этом будем предполагать, что эти системы являются открытыми для вызовов, т.е., заявки, поступают в систему извне (в некотором входном потоке), каждому из них требуется конечное число обслуживаний, по окончании последнего из которых заявка навсегда покидает систему; а дисциплины обслуживания таковы, что в любой момент времени каждый прибор может обслуживать не более одного вызова (другими словами, не допускается параллельного обслуживания двух и более заявок одним прибором).

Во всех случаях мы обсудим условия, которые гарантируют стабильную работу системы.

2 . Расчётная часть

2.1 Первый этап. Система с отказами

На данном этапе проведём минимизацию средней стоимости обслуживания одной заявки в единицу времени для системы с отказами. Для этого определим число каналов обслуживания, обеспечивающее в системе с отказами наименьшее значение параметра - средней стоимости обслуживания одной заявки в единицу времени.

В соответствии с вариантом задания определены следующие параметры системы:

­ интенсивность входного потока (среднее число заявок, поступающих в систему в единицу времени) 1/ед. времени.

­ среднее время обслуживания одной заявки ед. времени;

­ стоимость эксплуатации одного канала ед. стоим./канал;

­ стоимость простоя одного канала ед. стоим./канал;

­ стоимость эксплуатации одного места в очереди

­ ед. стоим./заявка в очереди;

­ стоимость убытков, связанных с уходом заявки из системы, получившей отказ в обслуживании ед. стоим.ед. врем.

Задавая значения (число каналов обслуживания) от единицы до шести, вычислим финальные вероятности и в соответствии с ними показатели эффективности системы. Результаты вычислений приведены в Таблица 2.1 и Таблица 2.2, а также показаны на графиках функций, приведённых на Рисунок 2.1.

Выполним расчеты по формулам 2.1.

Вероятность того, что занят один (в данном случае все) канал равна:

Так как канал всего один, то.

1/ед. времени.

1/ед. времени.

Коэффициент загрузки равен:

ед. времени.

Так как анализируемая система с отказами не имеет очереди, то среднее число заявок, находящихся в очереди равно нулю при любом числе каналов обслуживания.

Вычислим показатели эффективности для системы с отказами при.

Вероятность того, что все каналы свободны равна:

Вероятность того, что занято два (в данном случае все) канала равна:

Так как канала всего два, то.

Вероятность обслуживания заявки равна:

Абсолютная пропускная способность системы (среднее число обслуженных заявок в единицу времени) равна:

1/ед. времени.

Интенсивность потока не обслуженных заявок (среднее число заявок, получивших отказ в обслуживании, в единицу времени) равна:

1/ед. времени.

Среднее число занятых каналов равно:

Среднее число свободных каналов равно:

Коэффициент загрузки равен:

Время пребывания заявки в системе равно:

ед. времени.

Общая стоимость обслуживания всех заявок в единицу времени равна:

Средняя стоимость обслуживания одной заявки в единицу времени равна:

Вычислим показатели эффективности для системы с отказами при.

Вероятность того, что все каналы свободны равна:

Вероятность того, что занят один канал равна:

Вероятность того, что занято три (в данном случае все) канала равна:

Так как канала всего три, то.

Вероятность обслуживания заявки равна:

Абсолютная пропускная способность системы (среднее число обслуженных заявок в единицу времени) равна:

1/ед. времени.

Интенсивность потока не обслуженных заявок (среднее число заявок, получивших отказ в обслуживании, в единицу времени) равна:

1/ед. времени.

Среднее число занятых каналов равно:

Среднее число свободных каналов равно:

Коэффициент загрузки равен:

Время пребывания заявки в системе равно:

ед. времени.

Общая стоимость обслуживания всех заявок в единицу времени равна:

Средняя стоимость обслуживания одной заявки в единицу времени равна:

Вычислим показатели эффективности для системы с отказами при.

Вероятность того, что все каналы свободны равна:

Вероятность того, что занят один канал равна:

Вероятность того, что занято два канала равна:

Вероятность того, что занято три канала равна:

Вероятность того, что занято четыре (в данном случае все) канала равна:

Так как канала всего четыре, то.

Вероятность обслуживания заявки равна:

Абсолютная пропускная способность системы (среднее число обслуженных заявок в единицу времени) равна:

1/ед. времени.

Интенсивность потока не обслуженных заявок (среднее число заявок, получивших отказ в обслуживании, в единицу времени) равна:

1/ед. времени.

Среднее число занятых каналов равно:

Среднее число свободных каналов равно:

Коэффициент загрузки равен:

Время пребывания заявки в системе равно:

ед. времени.

Общая стоимость обслуживания всех заявок в единицу времени равна:

Средняя стоимость обслуживания одной заявки в единицу времени равна:

Для и вычисления выполняются аналогично, поэтому подробного приводить не требуется. Результаты расчётов также внесены в Таблица 2.1 и Таблица 2.2. и показаны на Рисунок 2.1.

Таблица 2.1. Результаты расчётов для СМО с отказами

Система с отказами 1/ед. времени, ед. времени

Результирующие показатели

Таблица 2.2. Вспомогательные расчёты для СМО с отказами

ед. стоим.

ед. стоим.

ед. стоим.

ед. стоим.

ед. стоим.

Полученные расчёты позволяют сделать вывод, что наиболее оптимальным количеством каналов системы с отказами будет, так как при этом обеспечивается минимальное значение средней стоимости обслуживания одной заявки в единицу времени, экономического показателя, характеризующего систему как с точки зрения потребителя, так и с точки зрения её эксплуатационных свойств.

Рисунок 2.1. Графики результирующих показателей СМО с отказами

Значения основных показателей эффективности оптимальной СМО с отказами:

ед. времени.

Допустимое для смешенной СМО значение времени пребывания заявки в системе вычисляется по формуле 2.2.

ед. времени.

2.2 Второй этап. Смешанная система

На данном этапе изучается, соответствующая заданию, система массового обслуживания с ограничением на время пребывания в очереди. Основной задачей этого этапа является решение вопроса о возможности с введением очереди обеспечить уменьшение значения оптимального для рассматриваемой системы значения экономического показателя С и улучшить другие показатели эффективности изучаемой системы.

Задавая значения параметра (среднего времени пребывания заявки в системе), вычислим те же показатели эффективности, что и для системы с отказами. Результаты вычислений приведены в Таблица 2.3 и Таблица 2.4, а также показаны на графиках функций, приведённых на Рисунок 2.2.

Для вычисления вероятностей и основных показателей эффективности используем следующие формулы:

,

,

,

,

,

,

, . 2.3

Выполним расчеты по формулам 2.3.

Значение показателя одинаково для всех.

.

.

Вероятность того, что все каналы свободны, вычисляется по формулам:

,

, . 2.4

Вычислим несколько первых членов ряда, использую формулы 2.3:

.

.

.

.

.

Выполним остальные расчеты по формулам 2.2.

Вычислим финальные вероятности:

.

.

.

.

Среднее число свободных каналов равно:

Среднее число занятых каналов равно:

.

1/ед. времени.

Интенсивность потока не обслуженных заявок (среднее число заявок, получивших отказ в обслуживании, в единицу времени) равна:

1/ед. времени.

.

ед. времени.

Общая стоимость обслуживания всех заявок в единицу времени равна:

ед. ст.

Средняя стоимость обслуживания одной заявки в единицу времени равна:

ед. ст.

Так как полученная средняя стоимость обслуживания одной заявки меньше аналогичного параметра оптимальной СМО с отказами

, следует увеличить.

Выполним расчёт показателей эффективности СМО с ограничением на время пребывания в очереди ед. времени.

.

Требуемая по заданию точность расчёта финальных вероятностей составляет 0,01. Для обеспечения данной точности достаточно вычислить приблизительную сумму бесконечного ряда с аналогичной точностью.

Для расчетов также используем формулы 2.2 и формулы 2.3.

.

.

.

.

.

.

.

.

.

Среднее число свободных каналов равно:

Среднее число занятых каналов равно:

канала

Вероятность обслуживания равна:

.

Абсолютная пропускная способность системы равна:

1/ед. времени.

Интенсивность потока не обслуженных заявок (среднее число заявок, получивших отказ в обслуживании, в единицу времени) равна:

1/ед. времени.

Коэффициент загрузки системы равен:

.

Среднее число заявок в очереди равно:

Вычислим среднее время пребывания заявки в системе, которое должно удовлетворять условию ед. времени.

ед. времени.

Общая стоимость обслуживания всех заявок в единицу времени равна:

ед. ст.

Средняя стоимость обслуживания одной заявки в единицу времени равна:

ед. ст.

Как видно из расчётов, увеличение приводит к уменьшению средней стоимости обслуживания одной заявки. Аналогично выполним расчёты с увеличением среднего времени пребывания заявки в очереди, результаты внесём в Таблица 2.3 и Таблица 2.4, а также отобразим на Рисунок 2.2.

Таблица 2.3. Результаты расчётов для смешанной системы

Система с ограничением на время пребывания в очереди

1/ед. врем., ед. врем.

Результирующие показатели

Данные системы с отказами

Таблица 2.4. Вспомогательные расчёты для смешанной системы

К вычислению общей стоимости обслуживания заявок в единицу времени

ед. стоим.

ед. стоим.

ед. стоим.

ед. стоим.

ед. стоим.

Данные системы с отказами

Данные системы с ограничением на время пребывания в очереди

Полученные расчёты позволяют сделать вывод, что наиболее оптимальным средним временем пребывания заявки в очереди для системы с ограничением на время пребывания в очереди следует принять, так как при этом наименьшая средняя стоимость обслуживания одной заявки, а среднее время пребывания заявки в системе не превышает допустимого, то есть условие выполняется.

Рисунок 2.2. Графики результирующих показателей смешанной системы

Значения основных показателей эффективности оптимальной СМО с ограничением на время пребывания заявки в очереди:

ед. времени.

ед. времени.

Сравнивания показатели эффективности оптимальной системы с отказами и изучаемой оптимальной смешанной системы с ограничением на время пребывания в очереди можно заметить, кроме уменьшения средней стоимости обслуживания одной заявки, повышение загруженности системы и вероятности обслуживания заявки, что позволяет оценить исследуемую системы как более эффективную. Незначительное увеличение времени пребывания заявки в системе не влияет на оценку системы, так как ожидаемо при введении очереди.

2.3 Третий этап. Влияние производительности каналов

На этом этапе исследуем влияние производительности каналов обслуживания на эффективность системы. Производительность канала обслуживания определяется значением среднего времени обслуживания одной заявки. В качестве предмета исследования примем смешанную систему, признанную оптимальной на предыдущем этапе. Показатели эффективности этой первоначальной системы сравним с аналогичными показателями двух вариантов этой системы.

Вариант А. Система с уменьшенной производительностью каналов обслуживания за счет увеличения в два раза среднего времени обслуживания и с уменьшенными затратами, связанными с эксплуатацией и простоем оборудования.

, .

Вариант Б. Система с увеличенной производительностью каналов обслуживания за счет уменьшения в два раза среднего времени обслуживания и с увеличенными затратами, связанными с эксплуатацией и простоем оборудования.

, .

Результаты вычислений приведены в Таблица 2.5 и Таблица 2.6.

Выполним расчёт показателей эффективности СМО с уменьшенной производительностью каналов обслуживания.

ед. времени.

.

.

.

.

Вычислим вероятность того, что все каналы свободны.

Требуемая по заданию точность расчёта финальных вероятностей составляет 0,01. Для обеспечения данной точности достаточно вычислить приблизительную сумму бесконечного ряда с аналогичной точностью.

Вычислим несколько первых членов ряда:

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Вычислим остальные финальные вероятности:

.

.

.

.

Среднее число свободных каналов равно:

Среднее число занятых каналов равно:

канала

Вероятность обслуживания равна:

.

Абсолютная пропускная способность системы равна:

1/ед. времени.

Интенсивность потока не обслуженных заявок (среднее число заявок, получивших отказ в обслуживании, в единицу времени) равна:

1/ед. времени.

Коэффициент загрузки системы равен:

.

Среднее число заявок в очереди равно:

заявки.

ед. времени.

Общая стоимость обслуживания всех заявок в единицу времени равна:

ед. ст.

Средняя стоимость обслуживания одной заявки в единицу времени равна:

ед. ст.

Выполним расчёт показателей эффективности СМО с увеличенной производительностью каналов обслуживания.

ед. времени.

.

.

.

.

Вычислим вероятность того, что все каналы свободны.

Требуемая по заданию точность расчёта финальных вероятностей составляет 0,01. Для обеспечения данной точности достаточно вычислить приблизительную сумму бесконечного ряда с аналогичной точностью.

Вычислим несколько первых членов ряда:

.

.

.

.

.

.

Вычислим остальные финальные вероятности:

.

.

.

.

Среднее число свободных каналов равно:

Среднее число занятых каналов равно:

канала.

Вероятность обслуживания равна:

.

Абсолютная пропускная способность системы равна:

1/ед. времени.

Интенсивность потока не обслуженных заявок (среднее число заявок, получивших отказ в обслуживании, в единицу времени) равна:

1/ед. времени.

Коэффициент загрузки системы равен:

.

Среднее число заявок в очереди равно:

заявки.

Вычислим среднее время пребывания заявки в системе.

ед. времени.

Общая стоимость обслуживания всех заявок в единицу времени равна:

ед. ст.

Средняя стоимость обслуживания одной заявки в единицу времени равна:

ед. ст.

Таблица 2.5. Результаты расчётов третьего этапа

Заданная смешанная система

1/ед. врем., ед. врем.

Результирующие

показатели

Первонач. вариант

Вариант А

Вариант Б

Таблица 2.6. Вспомогательные расчёты третьего этапа

К вычислению общей стоимости обслуживания заявок в единицу времени

ед. стоим.

ед. стоим.

ед. стоим.

ед. стоим.

ед. стоим.

Первонач. вариант

Вариант А

Вариант Б

Полученные результаты показывают не целесообразность увеличивать или уменьшать производительность каналов обслуживания. Так как при уменьшении производительности каналов обслуживания возрастает среднее время пребывания заявки в системе, хотя загруженность системы близка к максимальной. При увеличении производительности большая часть каналов обслуживания простаивает, но с точки зрения потребителя система эффективна, так как вероятность обслуживания близка к единице, а время пребывания заявки в системе невелико. Данный расчёт демонстрирует два варианта системы, первый из которых эффективен с точки зрения эксплуатационных свойств и не эффективен с точки зрения потребителя, а второй - наоборот.

Заключение

В ходе выполнения курсового проекта были изучены и рассмотрены система массового обслуживания с отказами и смешанная система массового обслуживания с ограничением на время пребывания в очереди, а также исследовано влияние производительности каналов обслуживания на эффективность системы, выбранной оптимальной.

Сравнивая оптимальные СМО с отказами и смешанную систему по параметрам эффективности, наилучшей следует признать смешанную систему. Так как средняя стоимость обслуживания одной заявки в смешанной системе меньше чем аналогичный параметр в СМО с отказами на 9%.

Анализируя эффективность с точки зрения эксплуатационных свойств системы, смешанная система показывает лучшие результаты по сравнению с СМО с отказами. Коэффициент загрузки и абсолютная пропускная способность смешанной системы больше на 10%, чем аналогичные параметры у СМО с отказами. С точки зрения потребителя вывод не так очевиден. Вероятность обслуживания смешанной системы выше почти на 10%, что говорит о большей эффективности смешанной системы по сравнению с СМО с отказами. Но также наблюдается увеличение времени пребывания заявки в системе на 20%, что характеризует СМО с отказами как более эффективную по данному параметру.

В результате исследований наиболее эффективной признана оптимальная смешанная система. Данная система имеет следующие преимущества перед СМО с отказами:

­ меньше затраты на обслуживание одной заявки;

­ меньше простоя каналов обслуживания, ввиду большей загруженности;

­ большая доходность, так как пропускная способность системы выше;

­ есть возможность выдержать неравномерность интенсивности поступающих заявок (увеличение нагрузки), ввиду наличия очереди.

Исследования влияния производительности каналов обслуживания на эффективность смешанной системы массового обслуживания с ограничением на время пребывания в очереди позволяют сделать вывод, что наилучшим вариантом будет исходная оптимальная смешанная система. Так как при уменьшении производительности каналов обслуживания система очень сильно «проседает» с точки зрения потребителя. Время пребывания заявки в системе увеличивается в 3,6 раза! А при увеличении производительности каналов обслуживания система настолько легко справляется с нагрузкой, что 75% времени будет простаивать, что является другой, экономически не эффективной, крайностью.

Учитывая вышеизложенное, оптимальная смешанная система является наилучшим выбором, так как демонстрирует баланс показателей эффективности с точки зрения потребителя и эксплуатационных свойств, имея при этом наилучшие экономические показатели.

Библиографи я

1 Дворецкий С.И. Моделирование систем: учебник для студ. высш. учеб. заведений / М.: Издательский центр «Академия». 2009.

2 Лабскер Л.Г. Теория массового обслуживания в экономической сфере: Учеб. пособие для вузов / М.: ЮНИТИ. 1998.

3 Самусевич Г.А. Теория массового обслуживания. Простейшие системы массового обслуживания. Методические указания по выполнению курсового проекта. / Е.: УрТИСИ СибГУТИ. 2015.

Размещено на Allbest.ru

Подобные документы

    Истоки и история становления экономического анализа. Экономический анализ в условиях царской России, в послеоктябрьский период и в период перехода к рыночным отношениям. Теория массового обслуживания, ее применение и использование при принятии решений.

    контрольная работа , добавлен 03.11.2010

    Экономическая система в разных научных школах. Сравнительное исследование механизма функционирования разных экономических систем. Соотношение плана и рынка (аллокация ресурсов). Виды систем: современная, традиционная, плановая и смешанная (гибридная).

    курсовая работа , добавлен 25.12.2014

    Исследование особенностей повременной и сдельной заработной платы. Описание аккордной, контрактной и бестарифной систем оплаты труда. Бригадная форма организации труда. Анализ факторов, влияющих на заработную плату. Обзор причин неравенства в доходах.

    курсовая работа , добавлен 28.10.2013

    Методология сравнительного исследования экономических систем. Развитие взглядов на доиндустриальную экономическую систему. Рыночная экономика: концептуальная схема построения и реальная действительность. Модели смешанной экономики в развивающихся странах.

    книга , добавлен 27.12.2009

    Сущность массового типа организации производства и область его применения, основные показатели. Главные особенности применения массового типа организации производства на конкретном предприятии. Совершенствование управления массовым типом производства.

    курсовая работа , добавлен 04.04.2014

    Подходы к изучению экономики и экономического процесса. Хозяйственный механизм как часть экономической системы. Виды экономических систем. Капитализм, социализм и смешанная экономика в теории и на практике. Национальные модели экономических систем.

    курсовая работа , добавлен 14.04.2013

    Понятие экономических систем и подходы к их классификации. Основные модели развитых стран в рамках экономических систем. Основные черты и особенности шведской, американской, германской, японской, китайской и российской моделей переходной экономики.

    курсовая работа , добавлен 11.03.2010

    Сущность портфельного, бюджетного, проектного подходов к оценки проектов по внедрению информационных технологий в компании. Описание традиционных финансовых и вероятностных методик определения эффективности применения корпоративных информационных систем.

    реферат , добавлен 06.12.2010

    Понятие производственной функции и изокванты. Классификация малоэластичных, среднеэластичных и высокоэластичных товаров. Определение и использование коэффициентов прямых затрат. Использование метода теории игр в торговле. Системы массового обслуживания.

    практическая работа , добавлен 04.03.2010

    Понятие и классификация экономических систем, их разновидности и сравнительное описание. Сущность и главные условия существования рынка, закономерности и направления его развития. Понятие субъекта и объекта рыночной экономики, принципы управления.

4. ТЕОРИЯ МАССОВОГО ОБСЛУЖИВАНИЯ

4.1. Классификация систем массового обслуживания и их показатели эффективности

Системы, в которых в случайные моменты времени возникают заявки на обслуживание и имеются устройства для обслуживания этих заявок, называются системами массового обслуживания (СМО).

СМО могут быть классифицированы по признаку организации обслуживания следующим образом:

Системы с отказами не имеют очередей.

Системы с ожиданием имеют очереди.

Заявка, поступившая в момент, когда все каналы обслуживания заняты:

Покидает систему с отказами;

Становится в очередь на обслуживание в системах с ожиданием при неограниченной очереди или на свободное место при ограниченной очереди;

Покидает систему с ожиданием при ограниченной очереди, если в этой очереди нет свободного места.

В качестве меры эффективности экономической СМО рассматривают сумму потерь времени:

На ожидание в очереди;

На простои каналов обслуживания.

Для всех видов СМО используются следующие показатели эффективности :

- относительная пропускная способность - это средняя доля поступающих заявок, обслуживаемых системой;

- абсолютная пропускная способность - это среднее число заявок, обслуживаемых системой в единицу времени;

- вероятность отказа - это вероятность того, что заявка покинет систему без обслуживания;

- среднее число занятых каналов - для многоканальных СМО.

Показатели эффективности СМО рассчитываются по формулам из специальных справочников (таблиц). Исходными данными для таких расчетов являются результаты моделирования СМО.


4.2. Моделирование системы массового обслуживания:

основ­ные параметры, граф состояний

При всем многообразии СМО они имеют общие черты , которые позволяют унифицировать их моделирование для нахождения наиболее эффективных вариантов организации таких систем .

Для моделирования СМО необходимо иметь следующие исходные данные:

Основные параметры;

Граф состояний.

Результатами моделирования СМО являются вероятности ее состояний, через которые выражаются все показатели ее эффективности.

Основные параметры для моделирования СМО включают:

Характеристики входящего потока заявок на обслуживание;

Характеристики механизма обслуживания.

Рассмотрим характеристики потока заявок .

Поток заявок - последовательность заявок, поступающих на обслуживание.

Интенсивность потока заявок - среднее число заявок, поступающих в СМО в единицу времени.

Потоки заявок бывают простейшими и отличными от простейших.

Для простейших потоков заявок используются модели СМО.

Простейшим , или пуассоновским называется поток, являющийся стационарным , одинарным и в нем отсутствуют последействия .

Стационарность означает неизменность интенсивности поступления заявок с течением времени.

Одинарным поток заявок является в том случае, когда за малый промежуток времени вероятность поступления более чем одной заявки близка к нулю.

Отсутствие последействия заключается в том, что число заявок, поступивших в СМО за один интервал времени, не влияет на количество заявок, полученных за другой интервал времени.

Для отличных от простейших потоков заявок используются имитационные модели.

Рассмотрим характеристики механизма обслуживания .

Механизм обслуживания характеризуется:

- числом каналов обслуживания ;

Производительностью канала, или интенсивностью обслуживания - средним числом заявок, обслуживаемых одним каналом в единицу времени;

Дисциплиной очереди (например, объемом очереди , порядком отбора из очереди в механизм обслуживания и т. п.).

Граф состояний описывает функционирование системы обслуживания как переходы из одного состояния в другое под действием потока заявок и их обслуживания.

Для построения графа состояний СМО необходимо:

Составить перечень всех возможных состояний СМО;

Представить перечисленные состояния графически и отобразить возможные переходы между ними стрелками;

Взвесить отображенные стрелки, т. е. приписать им числовые значения интенсивностей переходов, определяемые интенсивностью потока заявок и интенсивностью их обслуживания.

4.3. Вычисление вероятностей состояний

системы массового обслуживания


Граф состояний СМО со схемой "гибели и рождения" представляет собой линейную цепочку, где каждое из средних состояний имеет прямую и обратную связь с каждым из соседних состояний, а крайние состояния только с одним соседним:

Число состояний в графе на единицу больше, чем суммарное число каналов обслуживания и мест в очереди.

СМО может быть в любом из своих возможных состояний, поэтому ожидаемая интенсивность выхода из какого-либо состояния равна ожидаемой интенсивности входа системы в это состояние. Отсюда система уравнений для определения вероятностей состояний при простейших потоках будет иметь вид:


где - вероятность того, что система находится в состоянии

- интенсивность перехода, или среднее число переходов системы в единицу времени из состояния в состояние .

Используя эту систему уравнений, а также уравнение

вероятность любого -ого состояния можно вычислить по следующему общему правилу :

вероятность нулевого состояния рассчитывается как

а затем берется дробь, в числителе которой стоит произведение всех интенсивностей потоков по стрелкам, ведущим слева направо от состояния до состояния а в знаменателе - произведение всех интенсивностей по стрелкам, идущим справа налево от состояния до состояния , и эта дробь умножается на рассчитанную вероятность

Выводы по четвертому разделу

Системы массового обслуживания имеют один или несколько каналов обслуживания и могут иметь ограниченную или неограниченную очередь (системы с ожиданием) заявок на обслуживание, не иметь очереди (системы с отказами). Заявки на обслуживание возникают в случайные моменты времени. Системы массового обслуживания характеризуются следующими показателями эффективности: относительная пропускная способность, абсолютная пропускная способность, вероятность отказа, среднее число занятых каналов.

Моделирование систем массового обслуживания осуществляется для нахождения наиболее эффективных вариантов их организации и предполагает следующие исходные данные для этого: основные параметры, граф состояний. К таким данным относятся следующие: интенсивность потока заявок, количество каналов обслуживания, интенсивность обслуживания и объем очереди. Число состояний в графе на единицу больше, чем сумма числа каналов обслуживания и мест в очереди.

Вычисление вероятностей состояний системы массового обслуживания со схемой «гибели и рождения» осуществляется по общему правилу.

Вопросы для самопроверки

Какие системы называются системами массового обслуживания?

Как классифицируются системы массового обслуживания по признаку их организации?

Какие системы массового обслуживания называются системами с отказами, а какие – с ожиданием?

Что происходит с заявкой, поступившей в момент времени, когда все каналы обслуживания заняты?

Что рассматривают в качестве меры эффективности экономической системы массового обслуживания?

Какие используются показатели эффективности системы массового обслуживания?

Что служит исходными данными для расчетов показателей эффективности систем массового обслуживания?

Какие исходные данные необходимы для моделирования систем массового обслуживания?

Через какие результаты моделирования системы массового обслуживания выражают все показатели ее эффективности?

Что включают основные параметры для моделирования систем массового обслуживания?

Чем характеризуются потоки заявок на обслуживание?

Чем характеризуются механизмы обслуживания?

Что описывает граф состояний системы массового обслуживания

Что необходимо для построения графа состояний системы массового обслуживания?

Что представляет собой граф состояний системы массового обслуживания со схемой «гибели и рождения»?

Чему равно число состояний в графе состояний системы массового обслуживания?

Какой вид имеет система уравнений для определения вероятностей состояний системы массового обслуживания?

По какому общему правилу вычисляется вероятность любого состояния системы массового обслуживания?

Примеры решения задач

1. Построить граф состояний системы массового обслуживания и привести основные зависимости ее показателей эффективности.

а) n-канальная СМО с отказами (задача Эрланга)

Основные параметры:

Каналов ,

Интенсивность потока ,

Интенсивность обслуживания .

Возможные состояния системы:

Все каналов заняты ( заявок в системе).

Граф состояний:

Относительная пропускная способность ,

Вероятность отказа ,

Среднее число занятых каналов .

б) n-канальная СМО с m-ограниченной очередью

Возможные состояния системы:

Все каналы свободны (ноль заявок в системе);

Один канал занят, остальные свободны (одна заявка в системе);

Два канала заняты, остальные свободны (две заявки в системе);

...................................................................................

Все каналы заняты, две заявки в очереди;

Все каналы заняты, заявок в очереди.

Граф состояний:

в) Одноканальная СМО с неограниченной очередью

Возможные состояния системы:

Все каналы свободны (ноль заявок в системе);

Канал занят, ноль заявок в очереди;

Канал занят, одна заявка в очереди;

...................................................................................

Канал занят, заявка в очереди;

....................................................................................

Граф состояний:

Показатели эффективности системы:

,

Среднее время пребывания заявки в системе ,

,

,

Абсолютная пропускная способность ,

Относительная пропускная способность .

г) n-канальная СМО с неограниченной очередью

Возможные состояния системы:

Все каналы свободны (ноль заявок в системе);

Один канал занят, остальные свободны (одна заявка в системе);

Два канала заняты, остальные свободны (две заявки в системе);

...................................................................................

Все каналов заняты ( заявок в системе), ноль заявок в очереди;

Все каналы заняты, одна заявка в очереди;

....................................................................................

Все каналы заняты, заявок в очереди;

....................................................................................

Граф состояний:

Показатели эффективности системы:

Среднее число занятых каналов ,

Среднее число заявок в системе ,

Среднее число заявок в очереди ,

Среднее время пребывания заявки в очереди .

2. Вычислительный центр имеет три ЭВМ. В центр поступает на решение в среднем четыре задачи в час. Среднее время решения одной задачи - полчаса. Вычислительный центр принимает и ставит в очередь на решение не более трех задач. Необходимо оценить эффективность центра.

РЕШЕНИЕ. Из условия ясно, что имеем многоканальную СМО с ограниченной очередью:

Число каналов ;

Интенсивность потока заявок (задача / час);

Время обслуживания одной заявки (час / задача), интенсивность обслуживания (задача / час);

Длина очереди .

Перечень возможных состояний:

Заявок нет, все каналы свободны;

Один канал занят, два свободны;

Два канала заняты, один свободен;

Три канала заняты;

Три канала заняты, одна заявка в очереди;

Три канала заняты, две заявки в очереди;

Три канала заняты, три заявки в очереди.

Граф состояний:

Рассчитаем вероятность состояния :

Показатели эффективности:

Вероятность отказа (все три ЭВМ заняты и три заявки стоят в очереди)

Относительная пропускная способность

Абсолютная пропускная способность

Среднее число занятых ЭВМ

3. (Задача с использованием СМО с отказами.) В ОТК цеха работают три контролера. Если деталь поступает в ОТК, когда все контролеры заняты обслуживанием ранее поступивших деталей, то она проходит непроверенной. Среднее число деталей, поступающих в ОТК в течение часа, равно 24, среднее время, которое затрачивает один контролер на обслуживание одной детали, равно 5 мин. Определить вероятность того, деталь пройдет ОТК необслуженной, насколько загружены контролеры и сколько их необходимо поставить, чтобы (* - заданное значение ).

РЕШЕНИЕ. По условию задачи , тогда .

1) Вероятность простоя каналов обслуживания:

,

3) Вероятность обслуживания:

4) Среднее число занятых обслуживанием каналов:

.

5) Доля каналов, занятых обслуживанием:

6) Абсолютная пропускная способность:

При . Произведя аналогичные расчеты для , получим

Так как , то произведя расчеты для , получим

ОТВЕТ. Вероятность того, что при деталь пройдет ОТК необслуженной, составляет 21%, и контролеры будут заняты обслуживанием на 53%.

Чтобы обеспечить вероятность обслуживания более 95%, необходимо не менее пяти контролеров.

4. (Задача с использованием СМО с неограниченным ожиданием.) Сберкасса имеет трех контролеров-кассиров () для обслуживания вкладчиков . Поток вкладчиков поступает в сберкассу с интенсивностью чел./ч. Средняя продолжительность обслуживания контролером-кассиром одного вкладчика мин.

Определить характеристики сберкассы как объекта СМО.

РЕШЕНИЕ. Интенсивность потока обслуживания , интенсивность нагрузки .

1) Вероятность простоя контролеров-кассиров в течение рабочего дня (см. предыдущую задачу №3):

.

2) Вероятность застать всех контролеров-кассиров занятыми:

.

3) Вероятность очереди:

.

4) Среднее число заявок в очереди:

.

5) Среднее время ожидания заявки в очереди:

мин.

6) Среднее время пребывания заявки в СМО:

7) Среднее число свободных каналов:

.

8) Коэффициент занятости каналов обслуживания:

.

9) Среднее число посетителей в сберкассе:

ОТВЕТ. Вероятность простоя контролеров-кассиров равна 21% рабочего времени , вероятность посетителю оказаться в очереди составляет 11,8%, среднее число посетителей в очереди 0,236 чел., среднее время ожидания посетителями обслуживания 0,472 мин.

5. (Задача с применением СМО с ожиданием и с ограниченной длиной очереди.) Магазин получает ранние овощи из пригородных теплиц. Автомобили с грузом прибывают в разное время с интенсивностью машин в день. Подсобные помещения и оборудование для подготовки овощей к продаже позволяют обрабатывать и хранить товар, привезенный двумя автомашинами (). В магазине работают три фасовщика (), каждый из которых в среднем может обрабатывать товар с одной машины в течение ч. Продолжительность рабочего дня при сменной работе составляет 12 ч.

Определить, какова должна быть емкость подсобных помещений, чтобы вероятность полной обработки товаров была .

РЕШЕНИЕ. Определим интенсивность загрузки фасовщиков:

Авт./дн.

1) Найдем вероятность простоя фасовщиков при отсутствии машин (заявок):

причем 0!=1,0.

2) Вероятность отказа в обслуживании:

.

3) Вероятность обслуживания:

Так как , произведем аналогичные вычисления для , получим), при этом вероятность полной обработки товара будет .

Задания для самостоятельной работы

Для каждой из следующих ситуаций определить:

a) к какому классу относится объект СМО;

b) число каналов ;

c) длину очереди ;

d)интенсивность потока заявок ;

e) интенсивность обслуживания одним каналом;

f) количество всех состояний объекта СМО.

В ответах указать значения по каждому пункту, используя следующие сокращения и размерности:

a) ОО – одноканальная с отказами; МО – многоканальная с отказами; ОЖО – одноканальная с ожиданием с ограниченной очередью; ОЖН - одноканальная с ожиданием с неограниченной очередью; МЖО – многоканальная с ожиданием с ограниченной очередью; МЖН - многоканальная с ожиданием с неограниченной очередью;

b) =… (единиц);

c) =… (единиц);

d) =ххх/ххх (единиц /мин);

e) =ххх/ххх (единиц /мин);

f) (единиц).

1. Дежурный по администрации города имеет пять телефонов. Телефонные звонки поступают с интенсивностью 90 заявок в час, средняя продолжительность разговора составляет 2 мин.

2. На стоянке автомобилей возле магазина имеются 3 места, каждое из которых отводится под один автомобиль. Автомобили прибывают на стоянку с интенсивностью 20 автомобилей в час. Продолжительность пребывания автомобилей на стоянке составляет в среднем 15 мин. Стоянка на проезжей части не разрешается.

3. АТС предприятия обеспечивает не более 5 переговоров одновременно. Средняя продолжительность разговоров составляет 1 мин. На станцию поступает в среднем 10 вызовов в сек.

4. В грузовой речной порт поступает в среднем 6 сухогрузов в сутки. В порту имеются 3 крана, каждый из которых обслуживает 1 сухогруз в среднем за 8 ч. Краны работают круглосуточно. Ожидающие обслуживания сухогрузы стоят на рейде.

5. В службе «Скорой помощи» поселка круглосуточно дежурят 3 диспетчера, обслуживающие 3 телефонных аппарата. Если заявка на вызов врача к больному поступает, когда диспетчеры заняты, то абонент получает отказ. Поток заявок составляет 4 вызова в минуту. Оформление заявки длится в среднем 1,5 мин.

6. Салон-парикмахерская имеет 4 мастера. Входящий поток посетителей имеет интенсивность 5 человек в час. Среднее время обслуживания одного клиента составляет 40 мин. Длина очереди на обслуживание считается неограниченной.

7. На автозаправочной станции установлены 2 колонки для выдачи бензина. Около станции находится площадка на 2 автомашины для ожидания заправки. На станцию прибывает в среднем одна машина в 3 мин. Среднее время обслуживания одной машины составляет 2 мин.

8. На вокзале в мастерской бытового обслуживания работают три мастера. Если клиент заходит в мастерскую, когда все мастера заняты, то он уходит из мастерской, не ожидая обслуживания. Среднее число клиентов, обращающихся в мастерскую за 1 ч, равно 20. Среднее время, которое затрачивает мастер на обслуживание одного клиента, равно 6 мин.

9. АТС поселка обеспечивает не более 5 переговоров одновременно. Время переговоров в среднем составляет около 3 мин. Вызовы на станцию поступают в среднем через 2 мин.

10. На автозаправочной станции (АЗС) имеются 3 колонки. Площадка при станции, на которой машины ожидают заправку, может вместить не более одной машины, и если она занята, то очередная машина, прибывшая к станции, в очередь не становится, а проезжает на соседнюю станцию. В среднем машины прибывают на станцию каждые 2 мин. Процесс заправки одной машины продолжается в среднем 2,5 мин.

11. В небольшом магазине покупателей обслуживают два продавца. Среднее время обслуживания одного покупателя – 4 мин. Интенсивность потока покупателей – 3 человека в минуту. Вместимость магазина такова, что одновременно в нем в очереди могут находиться не более 5 человек. Покупатель, пришедший в переполненный магазин, когда в очереди уже стоят 5 человек, не ждет снаружи и уходит.

12. Железнодорожную станцию дачного поселка обслуживает касса с двумя окнами. В выходные дни, когда население активно пользуется железной дорогой, интенсивность потока пассажиров составляет 0,9 чел./мин. Кассир затрачивает на обслуживание пассажира в среднем 2 мин.

Для каждой из указанных в вариантах СМО интенсивность потока заявок равна и интенсивность обслуживания одним каналом . Требуется:

Составить перечень возможных состояний;

Построить граф состояний по схеме "гибели и размножения".

В ответе указать для каждой задачи:

Количество состояний системы;

Интенсивность перехода из последнего состояния в предпоследнее.

Вариант № 1

1. одноканальная СМО с очередью длиной в 1 заявку

2. 2-канальная СМО с отказами (задача Эрланга)

3. 31-канальная СМО с 1-ограниченной очередью

5. 31-канальная СМО с неограниченной очередью

Вариант № 2

1. одноканальная СМО с очередью длиной в 2 заявки

2. 3-канальная СМО с отказами (задача Эрланга)

3. 30-канальная СМО с 2-ограниченной очередью

4. Одноканальная СМО с неограниченной очередью

5. 30-канальная СМО с неограниченной очередью

Вариант № 3

1. одноканальная СМО с очередью длиной в 3 заявки

2. 4-канальная СМО с отказами (задача Эрланга)

3. 29-канальная СМО с 3-ограниченной очередью

4. Одноканальная СМО с неограниченной очередью

5. 29-канальная СМО с неограниченной очередью

Вариант № 4

1. одноканальная СМО с очередью длиной в 4 заявки

2. 5-канальная СМО с отказами (задача Эрланга)

3. 28-канальная СМО с 4-ограниченной очередью

4. Одноканальная СМО с неограниченной очередью

5. 28-канальная СМО с неограниченной очередью

Вариант № 5

1. одноканальная СМО с очередью длиной в 5 заявок

2. 6-канальная СМО с отказами (задача Эрланга)

3. 27-канальная СМО с 5-ограниченной очередью

4. Одноканальная СМО с неограниченной очередью

5. 27-канальная СМО с неограниченной очередью

Вариант № 6

1. одноканальная СМО с очередью длиной в 6 заявок

2. 7-канальная СМО с отказами (задача Эрланга)

3. 26-канальная СМО с 6-ограниченной очередью

4. Одноканальная СМО с неограниченной очередью

5. 26-канальная СМО с неограниченной очередью

Вариант № 7

1. одноканальная СМО с очередью длиной в 7 заявок

2. 8-канальная СМО с отказами (задача Эрланга)

3. 25-канальная СМО с 7-ограниченной очередью

4. Одноканальная СМО с неограниченной очередью

5. 25-канальная СМО с неограниченной очередью

Вариант № 8

1. одноканальная СМО с очередью длиной в 8 заявок

2. 9-канальная СМО с отказами (задача Эрланга)

3. 24-канальная СМО с 8-ограниченной очередью

4. Одноканальная СМО с неограниченной очередью

5. 24-канальная СМО с неограниченной очередью

Вариант № 9

1. одноканальная СМО с очередью длиной в 9 заявок

2. 10-канальная СМО с отказами (задача Эрланга)

3. 23-канальная СМО с 9-ограниченной очередью

4. Одноканальная СМО с неограниченной очередью

5. 23-канальная СМО с неограниченной очередью

Вариант № 10

1. одноканальная СМО с очередью длиной в 10 заявок

2. 11-канальная СМО с отказами (задача Эрланга)

3. 22-канальная СМО с 10-ограниченной очередью

4. Одноканальная СМО с неограниченной очередью

5. 22-канальная СМО с неограниченной очередью

Расчет показателей эффективности открытой одноканальной СМО с отказами. Расчет показателей эффективности открытой многоканальной СМО с отказами. Расчет показателей эффективности многоканальной СМО с ограничением на длину очереди. Расчет показателей эффективности многоканальной СМО ожиданием.

1. Потоки заявок в СМО

2. Законы обслуживания

3. Критерии качества работы СМО

4.

5. Параметры моделей очередей. При анализе систем массового

6. I. Модель А – модель одноканальной системы массового об­служивания с Пуассоновским входным потоком заявок и Экспоненциальным временем обслуживания.

7. II. Модель В – многоканальная система обслуживания.

8. III. Модель С – модель с постоянным временем обслуживания.

9. IV. Модель D – модель с ограниченной популяцией.

Потоки заявок в СМО

Потоки заявок бывают входные и выходные.
Входной поток заявок – это временная последовательность событий на входе СМО, для которой появление события (заявки) подчиняется вероятностным (или детерминированным) законам. Если требования на обслуживание приходят в соответствие, с каким – либо графиком (например, автомобили приезжают на АЗС каждые 3 минуты) то такой поток подчиняется детерминированным (определенным) законам. Но, как правило, поступление заявок подчиняется случайным законам.
Для описания случайных законов в теории массового обслуживания вводится в рассмотрение модель потоков событий. Потоком событий называется последовательность событий, следующих одно за другим в случайные моменты времени .
В качестве событий могут фигурировать поступление заявок на вход СМО (на вход блока очереди), появление заявок на входе прибора обслуживания (на выходе блока очереди) и появление обслуженных заявок на выходе СМО.

Потоки событий обладают различными свойствами, которые позволяют различать различные типы потоков. Прежде всего, потоки могут быть однородными инеоднородными.
Однородные потоки – такие потоки, в которых поток требований обладает одинаковыми свойствами: имеют приоритет первым пришел – первым обслужен, обрабатываемые требования имеют одинаковые физические свойства.
Неоднородные потоки – такие потоки, в которых требования обладают неодинаковыми свойствами: требования удовлетворяются по принципу приоритетности (пример, карта прерываний в ЭВМ), обрабатываемые требования имеют различные физические свойства.
Схематично неоднородный поток событий может быть изображен следующим образом

Соответственно можно использовать несколько моделей СМО для обслуживания неоднородных потоков: одноканальная СМО с дисциплиной очереди, учитывающей приоритеты неоднородных заявок, и многоканальная СМО с индивидуальным каналом для каждого типа заявок.
Регулярным потоком называется поток, в котором события следуют одно за другим через одинаковые промежутки времени. Если обозначить через – моменты появления событий, причем , а через интервалы между событиями, то для регулярного потока

Рекуррентный поток соответственно определяется как поток, для которого все функции распределения интервалов между заявками

совпадают, то есть

Физически рекуррентный поток представляет собой такую последовательность событий, для которой все интервалы между событиями как бы "ведут себя" одинаково, т.е. подчиняются одному и тому же закону распределения. Таким образом, можно исследовать только один какой-нибудь интервал и получить статистические характеристики, которые будут справедливы для всех остальных интервалов.
Для характеристики потоков очень часто вводят в рассмотрение вероятность распределения числа событий в заданном интервале времени , которая определяется следующим образом:

где – число событий, появляющихся на интервале .
Поток без последействия характеризуется тем свойством, что для двух непересекающихся интервалов времени и , где , , , вероятность появления числа событий на втором интервале не зависит от числа появления событий на первом интервале.

Отсутствие последействия означает отсутствие вероятностной зависимости последующего течения процесса от предыдущего. Если имеется одноканальная СМО с временем обслуживания , то при потоке заявок без последействия на входе системы выходной поток будет с последействием, так как заявки на выходе СМО не появляются чаще чем интервал . В регулярном потоке, в котором события следуют друг за другом через определенные промежутки времени, имеется самое жесткое последействие.
Потоком с ограниченным последействием называется такой поток, для которого интервалы между событиями независимы.
Поток называется стационарным, если вероятность появления какого-то числа событий на интервале времени зависит только от длины этого интервала и не зависит от его расположения на оси времени. Для стационарного потока событий среднее число событий в единицу времени постоянно.
Ординарным потоком называется такой поток, для которого вероятность попадания на данный малый отрезок времени dt двух и более требований пренебрежительно мала по сравнению с вероятностью попадания одного требования.
Поток, который обладает свойствами стационарности, отсутствия последействия и ординарности называют пуассоновским (простейшим). Этот поток занимает центральное место среди всего многообразия потоков, так же как случайные величины или процессы с нормальным законом распределения в прикладной теории вероятности.
Пуассоновский поток описывается следующей формулой:
,
где – вероятность появления событий за время , – интенсивность потока.
Интенсивностью потока называют среднее число событий, которые появляются за единицу времени.
Для пуассоновского потока интервалы времени между заявками распределены по экспоненциальному закону

Потоком с ограниченным последействием, для которого интервалы времени между заявками распределены по нормальному закону, называется нормальным потоком.

Законы обслуживания

Режим обслуживания (время обслуживания), так же как и режим поступления заявок, может быть либо постоянным, либо случайным. Во многих случаях время обслуживания подчиняется экспоненциальному распределению.
Вероятность того, что обслуживание закончится до момента t, равна:

где – плотность потока заявок
Откуда плотность распределения времени обслуживания

Дальнейшим обобщением экспоненциального закона обслуживания может служить закон распределения Эрланга, когда каждый интервал обслуживания подчиняется закону:

где – интенсивность исходного пуассоновского потока, k – порядок потока Эрланга.

Критерии качества работы СМО

Эффективность работы СМО оценивается различными показателями в зависимости от цепи и типа СМО. Наибольшее распространение получили следующие:

Абсолютная пропускная способность СМО с отказами (производительность системы) – среднее число требований, которые может обработать система.

Относительная пропускная способность СМО – отношение среднего числа требований, обработанных системой, к среднему числу требований, поступивших на вход СМО.

Средняя длительность простоя системы.

Для СМО с очередью добавляются такие характеристики:
Длина очереди, которая зависит от ряда факторов: от того, когда и сколько требований поступило в систему, сколько времени затрачено на обслуживание требований, которые поступили. Длина очереди является случайной величиной. От длины очереди зависит эффективность работы системы массового обслуживания.

Для СМО с ограниченным ожиданием в очереди важны все перечисленные характеристики, а для систем с неограниченным ожиданием абсолютная и относительная пропускная способности СМО теряют смысл.

На рис. 1 приведены системы обслуживания различной кон­фигурации.

Параметры моделей очередей. При анализе систем массового обслуживания используются технические и экономические харак­теристики.

Наиболее часто используются следующие Технические характери­стики:

1) среднее время, которое клиент проводит в очереди;

2) средняя длина очереди;

3) среднее время, которое клиент проводит в системе обслужи­вания (время ожидания плюс время обслуживания);

4) среднее число клиентов в системе обслуживания;

5) вероятность того, что система обслуживания окажется незанятой;

6) вероятность определенного числа клиентов в системе.

Среди Экономических характеристик наибольший интерес пред­ставляют следующие:

1) издержки ожидания в очереди;

2) издержки ожидания в системе;

3) издержки обслуживания.

Модели систем массового обслуживания . В зависимости от со­четания приведенных выше характеристик могут рассматривать­ся различные модели систем массового обслуживания.

Здесь мы ознакомимся с несколькими наиболее известными моделями. Все они имеют следующие общие характеристики:

А) пуассоновское распределение вероятностей поступления заявок;

Б) стандартное поведение клиентов;

В) правило обслуживания FIFO (первым пришел - первым об­служен);

Г) единственная фаза обслуживания.

I. Модель А - модель одноканальной системы массового об­служивания М/М/1 с Пуассоновским входным потоком заявок и Экспоненциальным временем обслуживания.

Наиболее часто встречаются задачи массового обслуживания с единственным каналом. В этом случае клиенты формируют одну очередь к единственному пункту обслуживания. Предположим, что для систем этого типа выполняются следующие условия:

1. Заявки обслуживаются по принципу «первым пришел - пер­вым обслужен» (FIFO), причем каждый клиент ожидает своей очереди до конца независимо от длины очереди.

2. Появления заявок являются независимыми событиями, од­нако среднее число заявок, поступающих в единицу времени, не­изменно.

3. Процесс поступления заявок описывается пуассоновским распределением, причем заявки поступают из неограниченного множества.

4. Время обслуживания описывается экспоненциальным рас­пределением вероятностей.

5. Темп обслуживания выше темпа поступления заявок.

Пусть λ – число заявок в единицу времени;

μ – число клиентов, обслуживаемых в единицу времени;

n – число заявок в системе.

Тогда система массового обслуживания описывается уравнени­ями, приведенными ниже.

Формулы для описания системы М/М/1:

Среднее время обслуживания одного клиента в системе (время ожидания плюс время обслуживания);

Среднее число клиентов в очереди;

Среднее время ожидания клиента в очереди;

Характеристика загруженности системы (доля време­ни, в течение которого система занята обслуживанием);

Вероятность отсутствия заявок в системе;

Вероятность того, что в системе находится бо­лее чем K заявок.

II. Модель В - многоканальная система обслуживания M/M/S. В многоканальной системе для обслуживания открыты два ка­нала или более. Предполагается, что клиенты ожидают в общей очереди и обращаются в первый освободившийся канал обслужи­вания.

Пример такой многоканальной однофазовой системы можно увидеть во многих банках: из общей очереди клиенты обращают­ся в первое освободившееся окошко для обслуживания.

В многоканальной системе поток заявок подчиняется Пуассоновскому закону, а время обслуживания -Экспоненциальному. Приходящий первым обслуживается первым, и все каналы обслу­живания работают в одинаковом темпе. Формулы, описывающие модель В, достаточно сложны для использования. Для расчета параметров многоканальной системы обслуживания удобно ис­пользовать соответствующее программное обеспечение.

Время нахождения заявки в очереди;

Время нахождения заявки в системе.

III. Модель С - модель с постоянным временем обслуживания M/D/1.

Некоторые системы имеют Постоянное, а не экспоненциально распределенное время обслуживания. В таких системах клиенты обслуживаются в течение фиксированного периода времени, как, например, на автоматической мойке автомобилей. Для модели С С постоянным темпом обслуживания значения величин Lq и Wq Вдвое меньше, чем соответствующие значения в модели А, име­ющей переменный темп обслуживания.

Формулы, описывающие модель С:

Средняя длина очереди;

Среднее время ожидания в очереди;

Среднее число клиентов в системе;

Среднее время ожидания в системе.

IV. Модель D - модель с ограниченной популяцией.

Если число потенциальных клиентов системы обслуживания Ограничено, мы имеем дело со специальной моделью. Такая за­дача может возникнуть, например, если речь идет об обслужива­нии оборудования фабрики, имеющей пять станков.

Особенность этой модели по сравнению с тремя рассмотрен­ными ранее в том, что существует Взаимозависимостьмежду длиной очереди и темпом поступления заявок.

V. Модель Е - модель с ограниченной очередью. Модель от­личается от предыдущих тем, что число мест в очереди Ограни­чено. В этом случае заявка, прибывшая в систему, когда все ка­налы и места в очереди заняты, покидает систему необслуженной, т. е. получает отказ.

Как частный случай модели с ограниченной очередью можно рассматривать Модель с отказами, если количество мест в очере­ди сократить до нуля.

Теория СМО посвящена разработке методов анализа, проектирования и рациональной организации систем, относящихся к различным областям деятельности, таким как связь, вычислительная техника, торговля, транспорт, военное дело. Несмотря на все свое разнообразие, приведенные системы обладают рядом типичных свойств, а именно.

  • СМО (системы массового обслуживания) - это модели систем , в которые в случайные моменты времени извне или изнутри поступают заявки (требования). Они должны тем или иным образом быть обслужены системой. Длительность обслуживания чаще всего случайна.
  • СМО представляет собой совокупность обслуживающего оборудования и персонала при соответствующей организации процесса обслуживания.
  • Задать СМО – это значит задать ее структуру и статистические характеристики последовательности поступления заявок и последовательности их обслуживания.
Задача анализа СМО заключается в определении ряда показателей ее эффективности, которые можно разделить на следующие группы:
  • показатели, характеризующие систему в целом: число n занятых каналов обслуживания, число обслуженных (λ b ), ожидающих обслуживание или получивших отказ заявок (λ c ) в единицу времени и т.д.;
  • вероятностные характеристики : вероятность того, что заявка будет обслужена (P обс) или получит отказ в обслуживании (P отк), что все приборы свободны (p 0) или определенное число их занято (p k ), вероятность наличия очереди и т.д.;
  • экономические показатели : стоимость потерь, связанных с уходом не обслуженной по тем или иным причинам заявки из системы, экономический эффект, полученный в результате обслуживания заявки, и т.д.
Часть технических показателей (первые две группы) характеризуют систему с точки зрения потребителей , другая часть – характеризует систему с точки зрения её эксплуатационных свойств . Часто выбор перечисленных показателей, может улучшать эксплуатационные свойства системы, но ухудшать систему с точки зрения потребителей и наоборот. Использование экономических показателей позволяет разрешить указанное противоречие и оптимизировать систему с учетом обеих точек зрения.
В ходе выполнения домашней контрольной работы изучаются простейшие СМО. Это системы разомкнутого типа, бесконечный источник заявок в систему не входит. Входной поток заявок, потоки обслуживания и ожидания этих систем являются простейшими. Приоритеты отсутствуют. Системы однофазные.

Многоканальная система с отказами

Система состоит из одного узла обслуживания, содержащего n каналов обслуживания, каждый из которых может обслуживать только одну заявку.
Все каналы обслуживания одинаковой производительности и для модели системы неразличимы. Если заявка поступила в систему и застала хотя бы один канал свободным, она мгновенно начинает обслуживаться. Если в момент поступления заявки в систему все каналы заняты, то заявка покидает систему не обслуженной.

Смешанные системы

  1. Система с ограничением на длину очереди .
    Состоит из накопителя (очереди) и узла обслуживания. Заявка покидает очередь и уходит из системы, если в накопителе к моменту ее появления уже находятся m заявок (m – максимально возможноечисло мест в очереди). Если заявка поступила в систему и застала, хотя бы один канал свободным, она мгновенно начинает обслуживаться. Если в момент поступления заявки в систему все каналы заняты, то заявка не покидает систему, а занимает место в очереди. Заявка покидает систему не обслуженной, если к моменту её поступления в систему заняты все каналы обслуживания и все места в очереди.
    Для каждой системы определяется дисциплина очереди. Это система правил, определяющих порядок поступления заявок из очереди в узел обслуживания. Если все заявки и каналы обслуживания равнозначны, то чаще всего действует правило «кто раньше пришел, тот раньше обслуживается».
  2. Система с ограничением на длительность пребывания заявки в очереди .
    Состоит из накопителя (очереди) и узла обслуживания. От предыдущей системы она отличается тем, что заявка, поступившая в накопитель (очередь), может ожидать начала обслуживания лишь ограниченное время Т ож (чаще всего это случайная величина). Если её время Т ож истекло, то заявка покидает очередь и уходит из системы не обслуженной.

Математическое описание СМО

СМО рассматриваются как некоторые физические системы с дискретными состояниями х 0 , х 1 , …, х n , функционирующие при непрерывном времени t . Число состояний n может быть конечным или счетным (n → ∞). Система может переходить из одного состояния х i (i= 1, 2, … , n) в другое х j (j= 0, 1, … ,n) в произвольный момент времени t . Чтобы показать правила таких переходов, используют схему, называемую графом состояний . Для типов перечисленных выше систем графы состояний образуют цепь, в которой каждое состояние (кроме крайних) связано прямой и обратной связью с двумя соседними состояниями. Это схема гибели и размножения.
Переходы из состояния в состояние происходят в случайные моменты времени. Удобно считать, что эти переходы происходят в результате действия каких-то потоков (потоков входных заявок, отказов в обслуживании заявок, потока восстановления приборов и т.д.). Если все потоки простейшие, то протекающий в системе случайный процесс с дискретным состоянием и непрерывным временем будет марковским.
Поток событий - это последовательность однотипных событий, протекающих в случайные моменты времени. Его можно рассматривать как последовательность случайных моментов времени t 1 , t 2 , … появления событий.
Простейшим называют поток, обладающий следующими свойствами:
  • Ординарность . События следуют по одиночке (противоположность потоку, где события следуют группами).
  • Стационарность . Вероятность попадания заданного числа событий на интервал времени Т зависит только от длины интервала и не зависит от того, где на оси времени находиться этот интервал.
  • Отсутствие последействия . Для двух непересекающихся интервалов времени τ 1 и τ 2 число событий, попадающих на один из них, не зависит от того, сколько событий попало на другой интервал.
В простейшем потоке интервалы времени Т 1 , Т 2 ,… между моментами t 1 , t 2 , … появления событий случайны, независимы между собой и имеют показательное распределение вероятностей f(t)=λe -λt , t≥0, λ=const, где λ - параметр показательного распределения, являющийся одновременно интенсивностью потока и представляющий собой среднее число событий, происходящих в единицу времени. Таким образом, t =M[T]=1/λ.
Марковские случайные события описываются обыкновенными дифференциальными уравнениями . Переменными в них служат вероятности состояний р 0 (t), p 1 (t),…,p n (t) .
Для очень больших моментов времени функционирования систем (теоретически при t → ∞) в простейших системах (системы, все потоки в которых – простейшие, а граф – схема гибели и размножения) наблюдается установившийся, или стационарный режим работы. В этом режиме система будет изменять свое состояние, но вероятности этих состояний (финальные вероятности ) р к , к= 1, 2 ,…, n, не зависят от времени и могут рассматриваться как среднее относительное время пребывания системы в соответствующем состоянии.

1. Интенсивность потока обслуживания заявок

2. Коэффициент загрузки СМО

3. Вероятность образования очереди

4. Вероятность отказа системы

5. Пропускная способность

6. Среднее число заявок, находящихся в очереди

7. Среднее число заявок, обслуживаемых СМО

8. Среднее число заявок, находящихся в СМО

9. Среднее время заявки в СМО

10. Среднее время пребывания заявки в очереди

11. Среднее число занятых каналов.

Судить о качестве полученной системы нужно по сов-ти значений показателей. При анализе результатов моделирования важно обращать внимание на интересы клиента и владельца системы. В частности, следует min-ть или max-ть тот или иной показатель.

26. Одноканальная СМО

27. Одноканальная СМО с отказами

28. Многоканальная СМО с ограниченной очередью

Параметры СМО:

o Интенсивность потока заявок.

o Интенсивность потока обслуживания.

o Среднее t обслуживания заявки.

o Кол-во каналов обслуживания.

o Дисциплина обслуживания.

< СМО на примере работы АЗС. Несколько одинак. колонок, произв-ть кот.известна. Если колонки заняты, то обслуживание в очереди м. ждать не > 3х машин одновременно. Очередь считаем общей. Если все места в очереди заняты, то машина получает отказ в обслуживании.

29. Транспортная задача

- широкий круг задач не только транспортного хар-ра, распределение ресурсов, наход-ся у неск. поставщиков, д/другого произвольного числа потребителей. Д/перевозчиков наиболее часто отн-ся к транспорту:

1. Привязка потребителей к ресурсам производителей.

2. Привязка к пунктам назначения пунктов отправления.

3. Взаимопривязка грузопотока прямого и обратного направления.

4. Оптимальное распределение V выпуска промышл. продукции м/у изготов-ми.

< модель привязки к пункту назначения. Известны: пункты отправления и назначения, объемы отправления по к-му пункту, потребность в грузе, стоимость доставки по каждому варианту. Н. оптимальный план перевозок с min транспортными издержками.

30. Тр. задача закрытая - ∑Vотправл. грузов= ∑V потреб-ти в этом грузе, т.е. ∑ai=∑bj (m – число поставщиков, n – число потребителей).

31 . Если это условие невозможно – открытая тр. задача . Тогда ее надо привести к закрытой:

1. Если потребность пунктов назначения превышает запасы пунктов отправления, то вводится фиктивный поставщик с недостающимV отправления.

2. Весь запас поставщиков > потребности, то ввод-сяфикт. потребитель.

32. Алгоритм решения задачи методом потенциалов (этапы):

1. Разработка начального плана (опорного решения).

2. Расчет потенциалов.

3. Проверка плана на оптимальность.

4. Поиск max звена не оптимальности (если п.3 не выполнен)

5. Составление контура перераспределения ресурсов.

6. Определение min эл-та в контуре перераспр-ния и перераспр. ресурсов по контуру.

7. Получение нового плана.

Эта процедура повторяется несколько раз, пока не будет найдено оптимальное решение. Алгоритм остается неизменным.Методы отыскания начального плана:

1. Метод С-З угла

2. Метод min стоимости

3. Метод двойного предпочтения

Метод потенциалов позволяет за конечное число планов найти оптимальный. (Метод Фогеля) Метод потенциалов разработан д/классич. транспорт.задач, но такие встречаются редко, приходится вводить ряд ограничений.

33. В экономике организации встреч-ся норма задач, кот.м.б. сведены к транспортной задаче:

1. Отд. поставки от опред. поставщиков некот. потребителями д.б. исключены из-за отсутствия необх. усл. хранения, перегрузки коммуникаций, и т.д.

2. Организ. необх. опред. min ∑затраты на пр-во и транспортировку продукции. М. оказаться экономич. более выгодным доставлять сырье из более отдал.пунктов, но при <себест-ти. Критерий оптимальности принимает ∑ затрат на пр-во и тран-ку.

3. Ряд трансп. маршрутов имеют ограничения по пропускной спос-ти.

4. Поставки по определ. маршрутам обязательны и обязат. д. войти в оптим. план.

5. Экономическая задача не является транспортной. (Пр. – распределение произв. изделий м/у предприятиями).

6. Необходимость max-ть целевую ф-ю задачи транспортного типа.

7. Необходимость в одно и то же t распределить груз различного рода по потребителям – Многопродуктовая транспортная задача .

8. Доставка грузов в краткий срок. (Метод потенциалов не пригоден, решается с пом. спец. алгоритма).

34. Транспортная задача в сетевой подстановке

Если условие транспортной задачи задано в виде схемы, на кот.изображены поставщики, потребители и связыв. их дороги, указаны величины запасов груза и потребностей в нем и показатели критерия оптимальности (тарифы, расстояния).В вершинах (узлах) сети изображают поставщиков и потребителей. Запасы груза считают положительными, а потребности отрицательными числами. Ребра (дуги) сети – дороги.Решение трансп. задачи в сетевой постановке основано на методе потенциалов и нач-ся с построения начального опорного плана, который должен удовлетворять требованиям:

1. Все запасы должны быть распределены, а потребители удовлетворены.

2. Для каждой вершины должна быть указана поставка груза (+ или -)

3. Общее количество поставок должно быть на 1 меньше числа вершин.

4. Стрелки, которыми обозначают поставки, не д. образовывать замкн. контур.

Затем план проверяют на оптимальность, для чего вычисляют потенциалы. Получают новый план и снова исследуют на оптимальность. Определяют значение целевой функции.

В случае открытой модели вводят фиктивного потребителя или поставщика.

35. Д/решения научных и практических задач в области логистики прим. основные методы:

1. Методы системного анализа

2. Методы теории исследования операции

3. Кибернетические методы

4. Метод прогнозирования

5. Методы экспертных оценок

6. Методы моделирования

36. Наиболее часть в логистике применяется имитац. моделирование, в кот.закономерности, определяющие количественное отношение остаются неизвестными, а сам логистический процесс остается «черным ящиком» или «серым ящиком».

К основным процессам имитац. моделирования отн-ся:

1. Конструирование модели реальной системы.

2. Постановка экспериментов на этой модели.

Цели моделирования:

o Определение поведения логистической системы.

o Выбор стратегии д/обеспеч. наиб.эфф-го функционирования логистич. системы.

Имитац. моделирование целесообразно исполнять, когда вып-ся условия:

1. Не сущ. законченой постановки задач или не разработаны аналитические методы решения сформулиров. матем. модели.

2. Аналитич. модель имеется, но процедуры сложны и трудоемки, сл. имитац. моделирование дает более простой способ решения задачи.

3. Аналитич. решения сущ., но их реализация невозможна из-за недостаточной математической подготовки персонала.

37. Широкое применение в логистике нашли экспертные системы – спец. комп.программы, кот. помогают специалистам принимать решения, связ. с управлением материальным потоком.

Экспертная система позволяет:

1. Принимать быстрые и качественные решения в области управления материальными потоками.

2. подготовить опытных специалистов за отн-но короткий срок.

4. Использовать опыт и знания высококвалифицированных специалистов на различных рабочих местах.

Недостатки экспертной системы:

1. Ограниченные воз-ти использования здравого смысла.

2. Невозм-но учесть все особенности в программе экспертной системы.