Журнал

Смо с ограниченной очередью примеры. Одноканальная смо с ожиданием и ограниченной очередью

Рассмотрим одноканальную систему массового обслуживания с ожиданием.

Будем предполагать, что входящий поток заявок на обслуживание есть простейший поток с интенсивностью λ.

Интенсивность потока обслуживания равна μ. Длительность обслуживания – случайная величина, подчиненная показательному закону распределения. Поток обслуживаний является простейшим пуассоновским потоком событий.

Заявка, поступившая в момент, когда канал занят, становится в очередь и ожидает обслуживания. Будем считать, что размер очереди ограничен и не может вместить более m заявок, т.е. заявка, заставшая в момент своего прихода в СМО m +1 заявок (m ожидающих в очереди и одну, находящуюся на обслуживании), покидает СМО.

Система уравнений, описывающих процесс в этой системе, имеет решение:

(0‑1)

Знаменатель первого выражения представляет собой геометрическую прогрессию с первым членом 1 и знаменателем ρ, откуда получаем

При ρ = 1 можно прибегнуть к прямому подсчету

(0‑8)

Среднее число находящихся в системе заявок.

Поскольку среднее число находящихся в системе заявок

(0‑9)

где - среднее число заявок, находящихся под обслуживанием, то зная остается найти . Т.к. канал один, то число обслуживаемых заявок может равняться либо 0, либо 1 с вероятностями P 0 и P 1=1- P 0 соответственно, откуда

(0‑10)

и среднее число находящихся в системе заявок равно

(0‑11)

Среднее время ожидания заявки в очереди .

(0‑12)

т.е., среднее время ожидания заявки в очереди равно среднему числу заявок в очереди, деленному на интенсивность потока заявок.

Среднее время пребывания заявки в системе.

Время пребывания заявки в системе складывается из времени ожидания заявки в очереди и времени обслуживания. Если загрузка системы составляет 100%, то =1/μ, в противном случае = q / μ . Отсюда

(0‑13)

Содержание работы .

Подготовка инструментария эксперимента .

Выполняется аналогично в соответствии с общими правилами.

Расчет на аналитической модели .

1. В приложение Microsoft Excel подготовьте таблицу следующего вида.

2. В столбцах для параметров СМО таблицы запишите исходные данные, которые определяются по правилу:

m=1,2,3

(максимальная длина очереди).

Для каждого значения m необходимо найти теоретические и экспериментальные значения показателей СМО для таких пар значений:

= <порядковый номер в списке группы>

3. В столбцы с показателями аналитической модели впишите соответствующие формулы.

Эксперимент на имитационной модели .

1. Установите режим запусков с экспоненциально распределенным временем обслуживания, задав значение соответствующего параметра равным 1.

2. Для каждой комбинации m , и осуществите запуск модели.

3. Результаты запусков внесите в таблицу.

4. Внесите в соответствующие столбцы таблицы формулы для расчета среднего значения показателя P отк , q и А.


Анализ результатов .

1. Проанализируйте результаты, полученные теоретическим и экспериментальным способами, сравнив результаты между собой.

2. Для m=3 постройте на одной диаграмме графики зависимости P отк от на теоретически и экспериментально полученных данных.

Оптимизация параметров СМО .

Решите задачу оптимизации размера числа мест в очереди m для прибора со средним временем обслуживания = с точки зрения получения максимальной прибыли. В качестве условий задачи возьмите:

- доход от обслуживания одной заявки равным 80 у.е./час,

- стоимость содержания одного прибора равным 1у.е./час.

1. Для расчетов целесообразно создать таблицу:

Первый столбец заполняется значениями чисел натурального ряда (1,2,3…).

Все клетки второго и третьего столбцов заполняются значениями и.

В клетки столбцов с четвертого по девятый переносятся формулы для столбцов таблицы раздела 0.

В столбцы с исходными данными разделов Доход, Расход, Прибыль внесите значения (см. выше).

В столбцах с вычисляемыми значениями разделов Доход, Расход, Прибыль запишите расчетные формулы:

- число заявок в единицу времени

N r =A

- суммарный доход в единицу времени

I S = I r *N r

- суммарный расход в единицу времени

E S =E s + E q *(n-1)

- прибыль в единицу времени

P = I S - E S

где

I r - доход от одной заявки ,

E s - расход на эксплуатацию одного прибора ,

E q - расход на эксплуатацию одного места в очереди .

Графики для P отк ,

- таблицу с данными для нахождения наилучшего m и значение m опт,

- график зависимости прибыли в единицу времени от m .


Контрольные вопросы :

1) Дайте краткое описание одноканальной модели СМО с ограниченной очередью.

2) Какими показателями характеризуется функционирование одноканальной СМО с отказами?

3) Как рассчитывается вероятность p 0 ?

4) Как рассчитываются вероятности p i ?

5) Как найти вероятность отказа обслуживания заявки?

6) Как найти относительную пропускную способность?

7) Чему равна абсолютная пропускная способность?

8) Как подсчитывается среднее число заявок в системе?

9) Приведите примеры СМО с ограниченной очередью.

Задачи .

1) Порт имеет один грузовой причал для разгрузки судов. Интенсивность потока составляет 0,5 заходов в сутки. Среднее время разгрузки одного судна 2 суток. Если в очереди на разгрузку стоят 3 судна, то приходящее судно направляется для разгрузки на другой причал. Найти показатели эффективности работы причала.

2) В справочную железнодорожного вокзала поступают телефонные запросы с интенсивностью 80 заявок в час. Оператор справочной отвечает на поступивший звонок в среднем 0,7 мин. Если оператор занят, клиенту выдается сообщение "Ждите ответа", запрос становится в очередь, длина которой не превышает 4 запросов. Дайте оценку работы справочной и вариант ее реорганизации

Системы с ожиданием при неограниченном входящем потоке

На n одинаковых каналов поступает простейший поток заявок интенсивностью λ . Если в момент поступления заявки все каналы заняты, то эта заявка становится в очередь и ждет начала облуживания. Время обслуживания каждой заявки является случайной величиной, которая подчиняется экспоненциальному закону распределения с параметром μ .

Расчетные формулы
Вероятность того, что все каналы свободны


Вероятность того, что занято k каналов, при условии, что общее число заявок, находящихся на обслуживании, не превосходит числа каналов,


Вероятность того, что в системе находится k заявок, в случае, когда их число больше числа каналов,


Вероятность того, что все каналы заняты,


Среднее время ожидания заявкой начала обслуживания в системе


Средняя длина очереди


Среднее число свободных от обслуживания каналов

Пример
Автозаправочная станция с двумя колонками обслуживает пуассоновский поток машин с интенсивностью λ=0,8 машин в минуту. Время обслуживания одной машины подчиняется показательному закону со средним значением 2 минуты. В данном районе нет другой АЗС, так что очередь перед АЗС может расти практически неограниченно. Найдите:
1) среднее число занятых колонок;
2) вероятность отсутствия очереди у АЗС;
3) вероятность того, что придется ждать начала обслуживания;
4) среднее число машин в очереди;
5) среднее время ожидания в очереди;
6) среднее время пребывания машины на АЗС;
7) среднее число машин на АЗС.
Решение . По условию задачи n=2, λ=0.8; μ=1/t обсл =0.5; ρ=λ/μ=1.6
Поскольку ρ /n =0,8<1, то очередь не растет безгранично и имеет смысл говорить о предельном стационарном режиме работы системы массового обслуживания.
Находим вероятности состояний СМО:

Среднее число занятых колонок:
N зан =n-N 0 = 2-(2·p 0 +1·p 1) = 2-2·0.1111 - 0.1778 = 1.6
Вероятность отсутствия очереди у АЗС:

Вероятность того, что придется ждать начала обслуживания равна вероятности того, что все колонки заняты:
p 0 +p 1 +p 2 = 0.1111+0.1778+0.1422 = 0.4311
Среднее число машин в очереди:


Среднее время ожидания в очереди:
Среднее время пребывания машины на АЗС:
t преб =t обсл +t ож = 2+3.5556 = 5.5556 мин.
Среднее число машин на АЗС:
N зан +L оч = 1.6+2.8444 = 4.4444
Рассмотрим одноканальную СМО с ожиданиями, в которой число каналов равно единице n = 1, интенсивность поступления заявок – λ, интенсивность обслуживания равна μ. Заявка, поступившая в тот момент времени, когда канал занят, становится в очередь и ждет обслуживания. Количество мест в очереди ограничено и равно m . Если все места в очереди заняты, то заявка покидает очередь не обслуженной. Проанализируем состояние системы:
  • S 0 – канал свободен;
  • S 1 – канал занят;
  • S 2 – канал занят, одна заявка в очереди;
  • S k – канал занят, (k–1) заявок в очереди;
  • S m + 1 – канал занят, в очереди m заявок.
Изобразим граф состояний такой СМО (рис. 25).

Рис. 25
По формулам Эрланга найдем вероятности событий, состоящих в том, что СМО находится в состоянии S 1 , S 2 , …, S m+1:
(28)

При этом вероятность того, что заявка, прибывшая в систему, найдет ее свободной, равна
. (29)
Отношение интенсивности поступления заявок λ к интенсивности обслуживания заявок μ есть приведенная интенсивность μ, т.е.

ρ=λ/μ
Произведем замену в формулах (28) и (29) отношения λ/&mu на ρ, тогда выражения примут вид:

(30)
Вероятность Р 0 будет вычисляться по следующей формуле:
p 0 = -1 . (31)
Выражение для вероятности P 0 есть геометрическая прогрессия, сумма которой будет равна

.
Таким образом, формулы (30) и (31) позволяют определить вероятность любого события, которое может произойти в системе, т. е. определить вероятность нахождения системы в любом состоянии.
Формула для P 0 справедлива для случая, когда ρ ≠ 1 . В случае, когда ρ = 1 , т. е. интенсивность поступления заявок равна интенсивности их обслуживания, используется другая формула для вычисления вероятности того, что система свободна:

,
где m – это количество заявок, находящихся в очереди.

Определим характеристики эффективности одноканальной СМО :

  • вероятность того, что очередная заявка, прибывшая в систему, получит отказ Р отк;
  • абсолютную пропускную способность А ,
  • относительную пропускную способность Q ,
  • число занятых каналов k ,
  • среднее число заявок в очереди r ,
  • среднее число заявок, связанных с СМО, z .

Очередная заявка, поступившая в систему, получает отказ в том случае, когда занят канал, т. е. идет обслуживание другой заявки, и все m мест в очереди также заняты. тогда вероятность этого события можно вычислить по следующей формуле:

. (32)
Вероятность того, что заявка придет в систему и либо немедленно будет обслужена, либо будут места в очереди, т. е. относительную пропускную способность, можно найти по формуле

. (33)
Среднее число заявок, которые могут быть обслужены в единицу времени, т. е. абсолютную пропускную способность, рассчитывают следующим образом:

A=Q·λ (34)
Таким образом, по формулам (32), (33), (34) можно вычислить основные показатели эффективности для любой системы массового обслуживания. теперь выведем выражения для вычисления характеристик, присущих лишь данной СМО.
Среднее число заявок в очереди r определим как математическое ожидание дискретной случайной величины, где R – число заявок в очереди.
Р 2 – это вероятность того, что в очереди на обслуживание находится одна заявка;
Р 3 – вероятность того, что в очереди две заявки;
Р k – вероятность того, что в очереди (k–1) заявка;
Р m + 1 – вероятность того что в очереди m заявок.
Тогда среднее число заявок в очереди можно вычислить следующим образом:
r =1·P 2 +2·P 3 + ... +(k-1)·P k + ... +m·P m+1 . (35)
Подставим в формулу (35) найденные ранее значения вероятностей, вычисленные в формуле (30):
r =1·ρ 2 ·p 0 +2·ρ 3 ·p 0 + ... +(k-1)·ρ k ·p 0 + ... +m·ρ m+1 ·p 0 . (35)
Вынесем за скобку вероятность P 0 и Р 2 , тогда получим итоговую формулу для вычисления среднего числа заявок в очереди на обслуживание:
r =ρ 2 ·p 0 (1+2·ρ+ ... +(k-1)·ρ k-2 + ... +m·ρ m-1)
Выведем формулу для среднего числа заявок, связанных с СМО, z , т. е. число заявок в очереди, находящихся на обслуживании. Рассмотрим общее число заявок, связанных с СМО, z как сумму двух величин среднего числа заявок в очереди r и числа занятых каналов k :

z = r +k .
Так как канал один, то число занятых каналов k может принимать значения 0 или 1. Вероятность того, что k = 0, т.е. система свободна, соответствует вероятности Р 0 , значение которой можно найти по формуле (31). Если k = 1, т.е. канал занят обслуживанием заявки, но места в очереди еще есть, то вероятность этого события можно вычислить по формуле

.
Следовательно, z будет равно:

. (37)

Одноканальная СМО с ожиданием

Система массового обслуживания имеет один канал. Входящий поток заявок на обслуживание - простейший поток с интенсивностью l. Интенсивность потока обслуживания равна m (т. е. в среднем непрерывно занятый канал будет выдавать m. обслуженных заявок). Длительность обслуживания - случайная величина, подчиненная показательному закону распределения. Поток обслуживании является простейшим пуассоновским потоком событий. Заявка, поступившая в момент, когда канал занят, становится в очередь и ожидает обслуживания.
Предположим, что независимо от того, сколько требований поступает на вход обслуживающей системы, данная система (очередь + обслуживаемые клиенты) не может вместить более N-требований (заявок), т. е. клиенты, не попавшие в ожидание, вынуждены обслуживаться в другом месте. Наконец, источник, порождающий заявки на обслуживание, имеет неограниченную (бесконечно большую) емкость.
Граф состояний СМО в этом случае имеет вид, показанный на Рис. 3.2.


Граф состояний одноканальной СМО с ожиданием (схема гибели и размножения)
Состояния СМО имеют следующую интерпретацию:
S 0 - канал свободен
S 1 - канал занят (очереди нет);
S 2 - канал занят (одна заявка стоит в очереди);
………………………………
S n - канал занят (n - 1 заявок стоит в очереди);
……………………………
S N - канал занят (N - 1 заявок стоит в очереди).
Стационарный провес в данной системе будет описываться следующей системой алгебраических уравнений :

п - номер состояния.
Решение приведенной выше системы уравнений (3.10) для нашей модели СМО имеет вид




Следует отметить, что выполнение условия стационарности для данной СМО необязательно, поскольку число допускаемых в обслуживающую систему заявок контролируется путем введения ограничения на длину очереди (которая не может превышать N - 1), а не соотношением между интенсивностями входного потока, т. е. не отношением
l/m = p
Определим характеристики одноканальной СМО с ожиданием и ограниченной длиной очереди, равной (N - 1):

Рассмотрим пример одноканальной СМО с ожиданием.
Пример 3.2. Специализированный пост диагностики представляет собой одноканальную СМО. Число стоянок для автомобилей, ожидающих проведения диагностики, ограничено и равно 3 [(N - 1) = 3]. Если все стоянки заняты, т. е. в очереди уже находится три автомобиля, то очередной автомобиль, прибывший на диагностику, в очередь на обслуживание не становится. Поток автомобилей, прибывающих на диагностику, распределен по закону Пуассона и имеет интенсивность l = 0,85 (автомобиля в час). Время диагностики автомобиля распределено по показательному закону и в среднем равно 1,05 час.
Требуется определить вероятностные характеристики поста диагностики, работающего в стационарном режиме.
Решение
1. Параметр потока обслуживании автомобилей:


2. Приведенная интенсивность потока автомобилей определяется как отношение интенсивностей l и m, т. е.


3. Вычислим финальные вероятности системы:

P 1 =ρ·P 0 = 0.893·0.248 = 0.221
P 2 =ρ 2 ·P 0 = 0.893 2 ·0.248 = 0.198
P 3 =ρ 3 ·P 0 = 0.893 3 ·0.248 = 0.177
P 4 =ρ 4 ·P 0 = 0.893 2 ·0.248 = 0.158
4. Вероятность отказа в обслуживании автомобиля:
P отк =P 4 =ρ 4 ·P 0 ≈ 0.158
5. Относительная пропускная способность поста диагностики:
q=1-P отк = 1-0.158 = 0.842
6. Абсолютная пропускная способность поста диагностики
A=λ·q = 0.85·0.842 = 0.716 (автомобиля в час)
7. Среднее число автомобилей, находящихся на обслуживании и в очереди (т.е. в системе массового обслуживания):


8. Среднее время пребывания автомобиля в системе:
9. Средняя продолжительность пребывания заявки в очереди на обслуживание:
W q =W S -1/μ = 2.473-1/0.952 = 1.423 часа
10. Среднее число заявок в очереди (длина очереди): L q = А,(1 - P N) W q = 0,85
L q =λ(1-P N)·W q = 0.85·(1-0.158)·1.423 = 1.02
Работу рассмотренного поста диагностики можно считать удовлетворительной, так как пост диагностики не обслуживает автомобили в среднем в 15,8% случаев (Р отк = 0,158). В качестве показателей эффективности СМО с ожиданием, кроме уже известных показателей - абсолютной А и относительной Q пропускной способности, вероятности отказа P отк. , среднего числа занятых каналов (для многоканальной системы) будем рассматривать также следующие: L сист. - среднее число заявок системе; Т сист. - среднее время пребывания заявки в системе; L оч. - среднее число заявок в очереди (длина очереди); Т оч. - среднее время пребывания заявки в очереди; Р зан.. - вероятность того, что канал занят (степень загрузки канала).

Одноканальная система с неограниченной очередью

На практике часто встречаются одноканальные СМО с неограниченной очередью (например, телефон-автомат с одной будкой).
Рассмотрим задачу.
Имеется одноканальная СМО с очередью, на которую не наложены никакие ограничения (ни по длине очереди, ни по времени ожидания). Поток заявок, поступающих в СМО, имеет интенсивность λ, а поток обслуживании - интенсивность μ. Необходимо найти предельные вероятности состояний и показатели эффективности СМО.
Система может находиться в одном из состояний S 0 , S 1 , S 2 , …, S k , по числу заявок, находящихся в СМО: S 0 - канал свободен; S 1 - канал занят (обслуживает заявку), очереди нет, S 2 - канал занят, одна заявка стоит в очереди; ... S k - канал занят, (k-1) заявок стоят в очереди и т.д.
Граф состояний СМО представлен на рис. 8.

Рис. 8
Это процесс гибели и размножения, но с бесконечным числом состояний, в котором интенсивность потока заявок равна λ, а интенсивность потока обслуживании μ.
Прежде чем записать формулы предельных вероятностей, необходимо быть уверенным в их существовании, ведь в случае, когда время t→∞, очередь может неограниченно возрастать. Доказано, что если ρ<1, т.е. среднее число приходящих заявок меньше среднего числа обслуженных заявок (в единицу времени), то предельные вероятности существуют. Если ρ≥1, очередь растет до бесконечности.

Для определения предельных вероятностей состояний воспользуемся формулами (16), (17) для процесса гибели и размножении (здесь мы допускаем известную нестрогость, так как ранее эти формулы были получены для случая конечного числа состояний системы). Получим(32)
Так как предельные вероятности существуют лишь при ρ < 1, то геометрический ряд со знаменателем
ρ < 1, записанный в скобках в формуле (32), сходится к сумме, равной . Поэтому
p 0 =1-ρ, (33)
и с учетом соотношений (17)
p 1 =ρ·p 0 ; p 2 =ρ 2 ·p 0 ; ... ; p k =ρ k ·p 0 ; ...
найдем предельные вероятности других состояний
p 1 =ρ·(1-ρ); p 2 =ρ 2 ·(1-ρ); ... ; p k =ρ k ·(1-ρ); ... (34)
Предельные вероятности p 0 , p 1 , p 2 , …, p k ,… образуют убывающую геометрическую профессию со знаменателем р < 1, следовательно, вероятность р 0 - наибольшая. Это означает, что если СМО справляется с потоком заявок (при ρ < 1), то наиболее вероятным будет отсутствие заявок в системе.
Среднее число заявок в системе L сист. определим по формуле математического ожидания, которая с учетом (34) примет вид
(35)
(суммирование от 1 до ∞, так как нулевой член 0·p 0 =0).
Можно показать, что формула (35) преобразуется (при ρ < 1) к виду
(36)
Найдем среднее число заявок в очереди L оч. Очевидно, что
L оч =L сист -L об (37)
где L об. - среднее число заявок, находящихся под обслуживанием.
Среднее число заявок под обслуживанием определим по формуле математического ожидания числа заявок под обслуживанием, принимающего значения 0 (если канал свободен) либо 1 (если канал занят):
L оч =0·p 0 +1·(1-p 0)
т.е. среднее число заявок под обслуживанием равно вероятности того, что канал занят:
L оч =P зан =1-p 0 , (38)
В силу (33)
L оч =P зан ρ, (39)
Теперь по формуле (37) с учетом (36) и (39)
(40)
Доказано, что при любом характере потока заявок, при любом распределении времени обслуживания, при любой дисциплине обслуживания среднее время пребывания заявки в системе (очереди) равна среднему числу заявок в системе (в очереди), деленному на интенсивность потока заявок, т.е.
(41)
(42)
Формулы (41) и (42) называются формулами Литтла. Они вытекают из того, что в предельном, стационарном режиме среднее число заявок, прибывающих в систему, равно среднему числу заявок, покидающих ее: оба потока заявок имеют одну и ту же интенсивность λ.
На основании формул (41) и (42) с учетом (36) и (40) среднее время пребывания заявки в системе определится по формуле:
(43)
а среднее время пребывания заявки в очереди
(44)

Одноканальная СМО с ожиданием без ограничения на вместимость блока ожидания

Стационарный режим функционирования данной СМО существует при t→∞ для любого п=0,1,2,… и когда l < m.Система алгебраических уравнений, описывающих работу СМО при t®¥ для любого n = 0, 1, 2...., имеет вид
Решение данной системы уравнений имеет вид
P n =(1-ρ)·ρ n , n=0,1,2,... (3.21)
где ρ=λ/μ < 1
Характеристики одноканальной СМО с ожиданием, без ограничения на длину очереди, следующие:
среднее число находящихся в системе клиентов (заявок) на обслуживание:
средняя продолжительность пребывания клиента в системе:


Пример 3.3. Вспомним о ситуации, рассмотренной в пример 3.2, где речь идет о функционировании поста диагностики. Пусть рассматриваемый пост диагностики располагает неограниченны» количеством площадок для стоянки прибывающих на обслуживание автомобилей, т. е. длина очереди не ограничена.
Требуется определить финальные значения следующих вероятностных характеристик:

  • вероятности состояний системы (поста диагностики);
  • среднее число автомобилей, находящихся в системе (на обслуживании и в очереди);
  • среднюю продолжительность пребывания автомобиля в системе (на обслуживании и в очереди);
  • среднее число автомобилей в очереди на обслуживании;
  • среднюю продолжительность пребывания автомобиля в очереди.

Решение
1. Параметр потока обслуживания m и приведенная интенсивность потока автомобилей р определены в примере 3.2:
m = 0,952; p = 0,893.
2. Вычислим предельные вероятности системы по формулам
P 0 =1-ρ = 1-0.893 = 0.107
P 1 =(1-ρ)·ρ = (1-0.893)·0.893 = 0.096
P 2 =(1-ρ)·ρ 2 = (1-0.893) 2 ·0.893 = 0.085
P 3 =(1-ρ)·ρ 3 = (1-0.893) 3 ·0.893 = 0.076
P 4 =(1-ρ)·ρ 4 = (1-0.893) 4 ·0.893 = 0.068
P 5 =(1-ρ)·ρ 5 = (1-0.893) 5 ·0.893 = 0.061
и т.д.
Следует отметить, что Р о определяет долю времени, в течение которого пост диагностики вынужденно бездействует (простаивает). В нашем примере она составляет 10,7%, так как Р о = 0,107.
3. Среднее число автомобилей, находящихся в системе (на обслуживании и в очереди):
4. Средняя продолжительность пребывания клиента в системе:


6. Средняя продолжительность пребывания автомобиля в очереди-
7. Относительная пропускная способность системы:
т. е. каждая заявка, пришедшая в систему, будет обслужена.
8. Абсолютная пропускная способность: А = lq = 0,85·1 = 0,85
Следует отметить, что предприятие, осуществляющее диагностику автомобилей, прежде всего интересует количество клиентов, которое посетит пост диагностики при снятии ограничения на длину очереди.
Допустим, в первоначальном варианте количество мест для стоянки прибывающих автомобилей было равно трем (см. пример 3.2). Частота m возникновения ситуаций, когда прибывающий на пост диагностики автомобиль не имеет возможности присоединиться к очереди:

т = l P N

В нашем примере при N = 3 + 1 = 4 и р = 0,893,
m = l Р о р 4 = 0,85·0,248·0,8934·0,134 автомобиля в час.
При 12-часовом режиме работы поста диагностики это эквивалентно тому, что пост диагностики в среднем за смену (день) будет терять 12·0,134 = 1,6 автомобиля.
Снятие ограничения на длину очереди позволяет увеличить количество обслуженных клиентов в нашем примере в среднем на 1,6 автомобиля за смену (12 ч. работы) поста диагностики. Ясно, что решение относительно расширения площади для стоянки автомобилей, прибывающих на пост диагностики, должно основываться на оценке экономического ущерба, который обусловлен потерей клиентов при наличии всего трех мест для стоянки этих автомобилей.

Многоканальная СМО с неограниченной очередью

Рассмотрим задачу. Имеется n-канальная СМО с неограниченной очередью. Поток заявок, поступающих в СМО, имеет интенсивность λ, а поток обслуживании - интенсивность μ. Необходимо найти предельные вероятности состояний СМО и показатели ее эффективности.

Система может находиться в одном из состояний S 0 , S 1 , S 2 ,…, S k ,…, S n ,…, - нумеруемых по числу заявок, находящихся в СМО: S 0 - в системе нет заявок (все каналы свободны); S 1 - занят один канал, остальные свободны; S 2 - заняты два канала, остальные свободны;..., S k - занято k каналов, остальные свободны;..., S n - заняты все n каналов (очереди нет); S n+1 - заняты все n каналов, в очереди одна заявка;..., S n+r - заняты все n каналов, r заявок стоит в очереди,....

Граф состояний системы показан на рис. 9. Обратим внимание на то, что в отличие от предыдущей СМО, интенсивность потока обслуживаний (переводящего систему из одного состояния в другое справа налево) не остается постоянной, а по мере увеличения числа заявок в СМО от 0 до n увеличивается от величины m до nm, так как соответственно увеличивается число каналов обслуживания. При числе заявок в СМО большем, чем n, интенсивность потока обслуживании сохраняется равной nm.

среднее число заявок в очереди
, (50)
среднее число заявок в системе
L сист =L оч +ρ, (51)
Среднее время пребывания заявки в очереди и среднее время пребывания заявки в системе, как и ранее, находятся по формулам Литтла (42) и (41).
Замечание. Для СМО с неограниченной очередью при r < 1 любая заявка, пришедшая в систему, будет обслужена, т.е. вероятность отказа P отк = 0, относительная пропускная способность Q =1, а абсолютная пропускная способность равна интенсивности входящего потока заявок, т.е. А =l.

СМО с ограниченной очередью

СМО с ограниченной очередью. СМО с ограниченной очередью отличаются от рассмотренных выше задач лишь тем, что число заявок в очереди ограничено (не может превосходить некоторого заданного т). Если новая заявка поступает в момент, когда все места в очереди заняты, она покидает СМО необслуженной, т.е. получает отказ.
Очевидно: для вычисления предельных вероятностей состояний и показателей эффективности таких СМО может быть использован тот же подход, что и выше, с той разницей, что суммировать надо не бесконечную прогрессию (как, например, мы делали при выводе формулы (33)), а конечную.
Среднее время пребывания заявки в очереди и в системе, как и ранее, определяем по формулам Литтла (44) и (43).
СМО с ограниченным временем ожидания. На практике часто встречаются СМО с так называемыми "нетерпеливыми" заявками. Такие заявки могут уйти из очереди, если время ожидания превышает некоторую величину. В частности, такого рода заявки возникают в различных технологических системах, в которых задержка с началом обслуживания может привести к потере качества продукции, в системах оперативного управления, когда срочные сообщения теряют ценность (или даже смысл), если они не поступают на обслуживание в течение определенного времени.

В простейших математических моделях таких систем предполагается, что заявка может находиться в очереди случайное время, распределенное по показательному закону с некоторым параметром υ, т.е. можно условно считать, что каждая заявка, стоящая в очереди на обслуживание, может покинуть систему с интенсивностью υ.
Соответствующие показатели эффективности СМО с ограниченным временем получаются на базе результатов, полученных для процесса гибели и размножения.

В заключение отметим, что на практике часто встречаются замкнутые системы обслуживания , у которых входящий поток заявок существенным образом зависит от состояния самой СМО. В качестве примера можно привести ситуацию, когда на ремонтную базу поступают с мест эксплуатации некоторые машины: понятно, что чем больше машин находится в состоянии ремонта, тем меньше их продолжает эксплуатироваться и тем меньше интенсивность потока вновь поступающих на ремонт машин. Для замкнутых СМО характерным является ограниченное число источников заявок, причем каждый источник "блокируется" на время обслуживания его заявки (т.е. он не выдает новых заявок). В подобных системах при конечном числе состояний СМО предельные вероятности будут существовать при любых значениях интенсивностей потоков заявок и обслуживании. Они могут быть вычислены, если вновь обратиться к процессу гибели и размножения.

Назначение сервиса СМО . Онлайн-калькулятор предназначен для расчета следующих показателей одноканальных СМО:
  • вероятность отказа канала, вероятность свободного канала, абсолютная пропускная способность;
  • относительная пропускная способность, среднее время обслуживания, среднее время простоя канала.

Инструкция . Для решения подобных задач в онлайн режиме выберите модель СМО. Укажите интенсивность потока заявок λ и интенсивность потока обслуживания μ . Для одноканальной СМО с ограниченной длиной очереди можно указать длину очереди m , а для одноканальной СМО с неограниченной очередью - число заявок в очереди (для расчета вероятности нахождения этих заявок в очереди). см. пример решения . . Полученное решение сохраняется в файле Word .

Классификация одноканальных систем массового обслуживания

Пример №1 . Авто заправочная станция имеет одну бензоколонку. Предполагается что простейший поток автомашин поступает на станцию с интенсивностью λ=11 автомашин/ч. Время обслуживания заявки случайная величина которая подчиняется экспоненциальному закону с параметром μ=14 автомашин/ч. Определить среднее число автомашин на станции.

Пример №2 . Имеется пункт проведения профилактического осмотра машин с одной группой проведения осмотра. На осмотр и выявление дефектов каждой машины затрачивается в среднем 0,4 часа. На осмотр поступает в среднем 328 машин в сутки. Потоки заявок и обслуживаний - простейшие. Если машина, прибывшая в пункт осмотра не застает ни одного канала свободным, она покидает пункт осмотра необслуженной. Определить предельные вероятности состояний и характеристики обслуживания пункта профилактического осмотра.
Решение. Здесь α = 328/24 ≈ = 13.67, t = 0.4. Эти данные необходимо ввести в калькулятор.

В систему поступает пуассоновский поток требований интенсивностью λ, поток обслуживания имеет интенсивность μ, максимальное число мест в очереди – т. Если заявка поступает в систему, когда все места в очереди заняты, она покидает систему необслуженной.

Финальные вероятности состояний такой системы всегда существуют, так как число состояний конечно:

S 0 – система свободна и находится в состоянии простоя;

S 1 – обслуживается одна заявка, канал занят, очереди нет;

S 2 – одна заявка обслуживается, одна в очереди;

S m +1 - одна заявка обслуживается,т в очереди.

Граф состояний такой системы показан на рисунке номер 5:

S 0 S 1 S 2 S m+1

μ μ μ ………. μ μ

Рисунок 5: Одноканальная СМО с ограниченной очередью.

В формуле для р 0 найдем сумму конечного числа членов геометрической прогрессии:

(52)

С учетом формулы для ρ получим выражение:

В скобках находится (m+2) элементов геометрической прогрессии с первым членом 1 и знаменателем ρ. По формуле суммы (m+2) членов прогрессии:

(54)

(55)

Формулы для вероятностей предельных состояний будут иметь вид:

Вероятность отказа в обслуживании заявки определим как вероятность того, что при поступлении заявки в систему ее канал будет занят и все места в очереди также заняты:

(57)

Отсюда вероятность обслуживания (а также и относительная пропускная способность ) равны вероятности противоположного события:

Абсолютная пропускная способность – число заявок, обслуженных системой в единицу времени:

(59)

Среднее число заявок под обслуживанием:

(60)

(61)

Среднее число заявок в системе:

(62)

Одноканальную СМО с ограниченной очередью можно рассмотреть в Mathcad.

Пример :

На стоянке обслуживается 3 машины с интенсивностью потока 0,5 и средним временем обслуживания 2,5 минуты. Определить все показатели системы.

6 Многоканальная смо с неограниченной очередью

Пусть дана система S, имеющаяп каналов обслуживания, на которые поступает простейший поток требований интенсивностью λ. Пусть поток обслуживания также простейший и имеет интенсивность μ. Очередь на обслуживание не ограничена.

По числу заявок, находящихся в системе, обозначим состояния системы: S 0 ,S 1 ,S 2 ,…,S k ,… S n , гдеS k состояние системы, когда в ней находитсяkзаявок (максимальное число заявок под обслуживанием -n). Граф состояний такой системы изображается в виде схемы на рисунке номер 6:

λ λ λ λ λ λ λ

……. …….

S 0 S 1 S 2 S m+1 S n

μ 2μ 3μ ………. kμ (k+1)μ …… nμ nμ

Рисунок 6: Многоканальная СМО с неограниченной очередью.

Интенсивность потока обслуживаний меняется в зависимости от состояния системы: kμ при переходе из состоянияS k в состояниеS k -1 так как может освободиться любой изk каналов; после того, как все каналы заняты обслуживанием, интенсивность потока обслуживаний остается равнойпμ, при поступлении в систему следующих заявок.

Для нахождения финальных вероятностей состояний получим формулы аналогично тому, как это было сделано для одноканальной системы.

(63)

Отсюда формулы для финальных вероятностей выражаются через

Для нахождения р 0 получим уравнение:

Для слагаемых в скобках, начиная с (n+ 2)-го, можно применить формулу нахождения суммы бесконечно убывающей геометрической прогрессии с первым членоми знаменателем ρ/n:

(66)

Окончательно получим формулу Эрланга для нахождения вероятности простоя системы:

(67)

Приведем формулы для расчета основных яоказателей эффективности работы системы.

Система будет справляться с потоком заявок, если

выполнено условие

, (68)

которое означает, что число заявок, поступивших в систему за единицу времени, не превосходит числа заявок, обслуженных системой за это же время. При этом вероятность отказа в обслуживании равна нулю.

Отсюда вероятность обслуживания (а также иотносительная пропускная способность системы) равны вероятности противоположного события, то есть единице:

(69)

Абсолютная пропускная способность - число заявок, обслуженныхсистемой в единицу времени:

(70)

Если система справляется с потоком заявок, то в стационарном режиме интенсивность выходящего потока равна интенсивности потока поступающих в систему заявок, так как обслуживаются все заявки:

ν=λ . (71)

Так как каждый канал обслуживает μ заявок в единицу времени, то среднее число занятых каналов можно вычислить:

(72)

Среднее время обслуживания каналом одной заявки;

. (73)

Вероятность того, что при поступлении в систему заявка окажется в очереди, равна вероятности того, что в системе находится более чем п заявок:

(74)

Число заявок, находящихся под обслуживанием, равно числу занятых каналов:

(75)

Среднее число заявок в очереди:

(76)

Тогда среднее число заявок в системе:

(77)

Среднее время пребывания заявки в системе (в очереди):

(78)

(79)

Многоканальную СМО с неограниченной очередью можно рассмотреть в системе Mathcad.

Пример 1 :

Салон-парикмахерская имеет 5 мастеров. В час пик интенсивность потока клиентов равна 6 человек. В час. Обслуживание одного клиента длится в среднем 40 минут. Определить среднюю длину очереди, считая ее неограниченной.

Фрагмент решения задачи в Mathcad.

Пример 2:

В железнодорожной кассе имеются 2 окна. Время на обслуживания одного пассажира 0,5 минут. Пассажиры подходят к кассе по 3 человека. Определить все характеристики системы.

Фрагмент решения задачи в Mathcad.

Продолжение решения задачи в Mathcad.

На практике довольно часто встречаются одноканальные СМО с очередью (врач, обслуживающий пациентов; телефон-автомат с одной будкой; ЭВМ, выполняющая заказы пользователей). В теории массового обслуживания одноканальные СМО с очередью также занимают особое место (именно к таким СМО относится большинство полученных до сих пор аналитических формул для немарковских систем). Поэтому мы уделим одноканальной СМО с очередью особое внимание.

Пусть имеется одноканальная СМО с очередью, на которую не наложено никаких ограничений (ни по длине очереди, ни по времени ожидания). На эту СМО поступает поток заявок с интенсивностью λ; поток обслуживаний имеет интенсивность μ, обратную среднему времени обслуживания заявки tоб. Требуется найти финальные вероятности состояний СМО, а также характеристики ее эффективности:

Lсист - среднее число заявок в системе,

Wсист - среднее время пребывания заявки в системе,

Lоч - среднее число заявок в очереди,

Woч - среднее время пребывания заявки в очереди,

Рзан - вероятность того, что канал занят (степень загрузки канала).

Что касается абсолютной пропускной способности А и относительной Q, то вычислять их нет надобности: в силу того, что очередь неограниченна, каждая заявка рано или поздно будет обслужена, поэтому А=λ, по той же причине Q = 1.

Решение. Состояния системы, как и раньше, будем нумеровать по числу заявок, находящихся в СМО:

S0 - канал свободен,

S1 - канал занят (обслуживает заявку), очереди нет,

S2 - канал занят, одна заявка стоит в очереди,

Sk - канал занят, k - 1 заявок стоят в очереди.

Теоретически число состояний ничем не ограничено (бесконечно). Граф состояний имеет вид, показанный на рис. 4.11. Это - схема гибели и размножения, но с бесконечным числом состояний. По всем стрелкам поток заявок с интенсивностью λ переводит систему слева направо, а справа налево - поток обслуживаний с интенсивностью μ.

Рис. 4.11. Граф состояний СМО в виде схемы гибели и размножения с бесконечным числом состояний

Прежде всего, спросим себя, а существуют ли в этом случае финальные вероятности? Ведь число состояний системы бесконечно, и, в принципе, при t→∞ очередь может неограниченно возрастать! Да, так оно и есть: финальные вероятности для такой СМО существуют не всегда, а только когда система не перегружена. Можно доказать, что если р строго меньше единицы (р<1), то финальные вероятности существуют, а при р ≥ 1 очередь при t →∞ растет неограниченно. Особенно «непонятным» кажется этот факт при р = 1. Казалось бы, к системе не предъявляется невыполнимых требований: за время обслуживания одной заявки приходит в среднем одна заявка, и все должно быть в порядке, а вот на деле - не так. При р = 1 СМО справляется с потоком заявок, только если поток этот - регулярен, и время обслуживания - тоже не случайное, равное интервалу между заявками. В этом «идеальном» случае очереди в СМО вообще не будет, канал будет непрерывно занят и будет регулярно выпускать обслуженные заявки. Но стоит только потоку заявок или потоку обслуживаний стать хотя бы немного случайными - и очередь уже будет расти до бесконечности. На практике этого не происходит только потому, что «бесконечное число заявок в очереди» - абстракция. Вот к каким грубым ошибкам может привести замена случайных величин их математическими ожиданиями!

Но вернемся к нашей одноканальной СМО с неограниченной очередью. Строго говоря, формулы для финальных вероятностей в схеме гибели и размножения выводились нами только для случая конечного числа состояний, но воспользуемся ими и для бесконечного числа состояний. Подсчитаем финальные вероятности состояний по формулам (4.21), (4.20). В нашем случае число слагаемых в формуле (4.21) будет бесконечным. Получим выражение для р0:

откуда

Вероятности р1, р2, ..., рk, ... найдутся по формулам:

откуда, с учетом (4.38), найдем окончательно:

p 1 = ρ(1 - ρ), = ρ2(1- ρ), . . ., pk = ρ4(1- ρ), . . . (4.39)

Как видно, вероятности р0, р1, ..., pk, ... образуют геометрическую прогрессию со знаменателем р. Как это ни странно, максимальная из них р0 - вероятность того, что канал будет вообще свободен. Как бы ни была нагружена система с очередью, если только она вообще справляется с потоком заявок (р <1), самое вероятное число заявок в системе будет 0.

Найдем среднее число заявок в СМО Lсист. Случайная величина Z - число заявок в системе - имеет возможные значения 0, 1, 2, ..., k, ... с вероятностями р0, р1, p2, ..., рk, ... Ее математическое ожидание равно

(сумма берется не от 0 до ∞, а от 1 до ∞, так как нулевой член равен нулю).

Подставим в формулу (4.40) выражение для рk (4.39):

Теперь вынесем за знак суммы р (1 - р):

Тут мы опять применим «маленькую хитрость»: kpk-1 есть не что иное, как производная по р от выражения рk; значит,

Меняя местами операции дифференцирования и суммирования, получим:

Ну, а теперь применим формулу Литтла (4.25) и найдем среднее время пребывания заявки в системе:

Найдем среднее число заявок в очереди Lоч. Будем рассуждать так: число заявок в очереди равно числу заявок в системе минус число заявок, находящихся под обслуживанием. Значит (по правилу сложения математических ожиданий), среднее число заявок в очереди Lоч равно среднему числу заявок в системе Lсист минус среднее число заявок под обслуживанием. Число заявок под обслуживанием может быть либо нулем (если канал свободен), либо единицей (если он занят). Математическое ожидание такой случайной величины равно вероятности того, что канал занят (мы ее обозначили Рзан). Очевидно, Рзан равно единице минус вероятность р0 того, что канал свободен:

и окончательно

Таким образом, все характеристики эффективности СМО найдены.

Предложим читателю самостоятельно решить пример: одноканальная СМО представляет собой железнодорожную сортировочную станцию, на которую поступает простейший поток составов с интенсивностью λ = 2 (состава в час). Обслуживание (расформирование) состава длится случайное (показательное) время со средним значением tоб = 20 (мин.). В парке прибытия станции имеются два пути, на которых могут ожидать обслуживания прибывающие составы; если оба пути заняты, составы вынуждены ждать на внешних путях. Требуется найти (для предельного, стационарного режима работы станции): среднее число составов Lсист, связанных со станцией, среднее время Wсист пребывания состава при станции (на внутренних путях, на внешних путях и под обслуживанием), среднее число Lоч составов, ожидающих очереди на расформирование (все равно, на каких путях), среднее время Wоч пребывания состава на очереди. Кроме того, попытайтесь найти среднее число составов, ожидающих расформирования на внешних путях Lвнеш и среднее время этого ожидания Wвнеш (две последние величины связаны формулой Литтла). Наконец, найдите суммарный суточный штраф Ш, который придется заплатить станции за простои составов на внешних путях, если за один час простоя одного состава станция платит штраф а (руб.). На всякий случай сообщаем ответы: Lcист = 2 (состава), Wсист = i (час), Lоч = 4/3 (состава), Wоч = 2/3 (часа), Lвнеш = 16/27 (состава), Wвнеш = 8/27 ≈ 0,297 (часа). Средний суточный штраф Ш за ожидание составов на внешних путях получим, перемножая среднее число составов, прибывающих на станцию за сутки, среднее время ожидания состава на внешних путях и часовой штраф а: Ш ≈ 14,2а.