Переводчик

Стационарный пуассоновский поток отказов. Процесс пуассона Пуассоновский поток данных классической и

За эталон потока в моделировании принято брать пуассоновский поток .

Пуассоновский поток - это ординарный поток без последействия.

Как ранее было указано, вероятность того, что за интервал времени (t 0 , t 0 + τ ) произойдет m событий, определяется из закона Пуассона:

где a - параметр Пуассона.

Если λ (t ) = const(t ), то это стационарный поток Пуассона (простейший). В этом случае a = λ · t . Если λ = var(t ), то это нестационарный поток Пуассона .

Для простейшего потока вероятность появления m событий за время τ равна:

Вероятность непоявления (то есть ни одного, m = 0) события за время τ равна:

Рис. 28.2 иллюстрирует зависимость P 0 от времени. Очевидно, что чем больше время наблюдения, тем вероятность непоявления ни одного события меньше. Кроме того, чем более значение λ , тем круче идет график, то есть быстрее убывает вероятность. Это соответствует тому, что если интенсивность появления событий велика, то вероятность непоявления события быстро уменьшается со временем наблюдения.

Вероятность появления хотя бы одного события (P ХБ1С) вычисляется так:

так как P ХБ1С + P 0 = 1 (либо появится хотя бы одно событие, либо не появится ни одного, - другого не дано).

Из графика на рис. 28.3 видно, что вероятность появления хотя бы одного события стремится со временем к единице, то есть при соответствующем длительном наблюдении события таковое обязательно рано или поздно произойдет. Чем дольше мы наблюдаем за событием (чем более t ), тем больше вероятность того, что событие произойдет - график функции монотонно возрастает.

Чем больше интенсивность появления события (чем больше λ ), тем быстрее наступает это событие, и тем быстрее функция стремится к единице. На графике параметр λ представлен крутизной линии (наклон касательной).

Если увеличивать λ , то при наблюдении за событием в течение одного и того же времени τ , вероятность наступления события возрастает (см. рис. 28.4 ). Очевидно, что график исходит из 0, так как если время наблюдения бесконечно мало, то вероятность того, что событие произойдет за это время, ничтожна. И наоборот, если время наблюдения бесконечно велико, то событие обязательно произойдет хотя бы один раз, значит, график стремится к значению вероятности равной 1.

Изучая закон, можно определить, что: m x = 1/λ , σ = 1/λ , то есть для простейшего потока m x = σ . Равенство математического ожидания среднеквадратичному отклонению означает, что данный поток - поток без последействия. Дисперсия (точнее, среднеквадратичное отклонение) такого потока велика. Физически это означает, что время появления события (расстояние между событиями) плохо предсказуемо, случайно, находится в интервале m x σ < τ j < m x + σ . Хотя ясно, что в среднем оно примерно равно: τ j = m x = T н /N . Событие может появиться в любой момент времени, но в пределах разброса этого момента τ j относительно m x на [–σ ; +σ ] (величину последействия). На рис. 28.5 показаны возможные положения события 2 относительно оси времени при заданном σ . В данном случае говорят, что первое событие не влияет на второе, второе на третье и так далее, то есть последействие отсутствует.

По смыслу P равно r (см. лекцию 23. Моделирование случайного события. Моделирование полной группы несовместных событий), поэтому, выражая τ из формулы (*) , окончательно для определения интервалов между двумя случайными событиями имеем:

τ = –1/λ · Ln(r ) ,

где r - равномерно распределенное от 0 до 1 случайное число, которое берут из ГСЧ, τ - интервал между случайными событиями (случайная величина τ j ).

Пример 1 . Рассмотрим поток изделий, приходящих на технологическую операцию. Изделия приходят случайным образом - в среднем восемь штук за сутки (интенсивность потока λ = 8/24 [ед/час]). Необходимо промоделировать этот процесс в течение T н = 100 часов. m = 1/λ = 24/8 = 3, то есть в среднем одна деталь за три часа. Заметим, что σ = 3. На рис. 28.6 представлен алгоритм, генерирующий поток случайных событий.

На рис. 28.7 показан результат работы алгоритма - моменты времени, когда детали приходили на операцию. Как видно, всего за период T н = 100 производственный узел обработал N = 33 изделия. Если запустить алгоритм снова, то N может оказаться равным, например, 34, 35 или 32. Но в среднем, за K прогонов алгоритма N будет равно 33.33… Если посчитать расстояния между событиями t сi и моментами времени, определяемыми как 3 · i , то в среднем величина будет равна σ = 3.

Основная задача ТСМО заключается в установлении зависимости между характером потока заявок на входе СМО, производительностью одного канала, числом каналов и эффективностью обслуживания.

В качестве критерия эффективности могут быть использованы различные функции и величины:

    • среднее время простоя системы;
    • среднее время ожидания в очереди;
    • закон распределения длительности ожидания требования в очереди;
    • средний % заявок, получивших отказ; и т.д.

Выбор критерия зависит от вида системы. Например, для систем с отказами главной характеристикой является абсолютная пропускная способность СМО; менее важные критерии - число занятых каналов, среднее относительное время простоя одного канала и системы в целом. Для систем без потерь (с неограниченным ожиданием) важнейшим является среднее время простоя в очереди, среднее число требований в очереди, среднее время пребывания требований в системе, коэффициент простоя и коэффициент загрузки обслуживающей системы.

Современная ТСМО является совокупностью аналитических методов исследования перечисленных разновидностей СМО. В дальнейшем из всех достаточно сложных и интересных методов решения задач массового обслуживания будут изложены методы, описываемые в классе марковских процессов типа “гибель и размножение”. Это объясняется тем, что именно эти методы чаще всего используются в практике инженерных расчетов.

2. Математические модели потоков событий.

2.1. Регулярный и случайный потоки.

Одним из центральных вопросов организации СМО является выяснение закономерностей, которым подчиняются моменты поступления в систему требований на обслуживание. Рассмотрим наиболее употребляемые математические модели входных потоков.

Определение: Поток требований называют однородным, если он удовлетворяет условиям:

  1. все заявки потока с точки зрения обслуживания являются равноправными;

вместо требований (событий) потока, которые по своей природе могут быть различными, рассматриваются толь ко моменты их поступления.

Определение: Регулярным называются поток, если события в потоке следуют один за другим через строгие интервалы времени.

Функция f (х) плотности распределения вероятности случайной величины Т – интервала времени между событиями имеет при этом вид:

Где - дельта функция, М т - математическое ожидание, причем М т =Т, дисперсия D т =0 и интенсивность наступления событий в поток =1/M т =1/T.

Определение: Поток называют случайным , если его события происходят в случайные моменты времени.

Случайный поток может быть описан как случайный вектор, который, как известно, может быть задан однозначно законом распределения двумя способами:

Где, zi - значения Ti(i=1,n), В этом случае моменты наступления событий могут быть вычислены следующим образом

t 1 =t 0 +z1

t 2 =t 1 +z2

………,

где, t 0 - момент начала потока.

2.2. Простейший пуассоновский поток.

Для решения большого числа прикладных задач бывает достаточным применить математические модели однородных потоков, удовлетворяющих требованиям стационарности, без последействия и ординарности.

Определение: Поток называется стационарным, если вероятность появления n событий на интервале времени (t,t+T) зависит от его расположения на временной оси t.

Определение: Поток событий называется ординарным, если вероятность появления двух или более событий в течении элементарного интервала времени D t есть величина бесконечно малая по сравнению с вероятностью появления одного события на этом интервале, т.е. при n=2,3,…

Определение: Поток событий называетсяпотоком без последствия , если для любых непересекающихся интервалов времени число событий, попадающих на один из них, не зависит от числа событий попадающих на другой.

Определение: Если поток удовлетворяет требованиям стационарности, ординарности и без последствия он называется простейшим, пуассоновским потоком.

Доказано, что для простейшего потока число n событий попадающих на любой интервал z распределено по закону Пуассона:

(1)

Вероятность того, что на интервале времени z не появится ни одного события равна:

(2)

тогда вероятность противоположного события:

где по определению P(T это функция распределения вероятности Т. Отсюда получим, что случайная величина Т распределена по показательному закону:

(3)

параметр называют плотностью потока. Причем,

Впервые описание модели простейшего потока появились в работах выдающихся физиков начала века – А. Эйнштейна и Ю.Смолуховского, посвященных броуновскому движению.

2.3. Свойства простейшего пуассоновского потока.

Известны два свойства простейшего потока, которые могут быть использованы при решении практических задач.

2.3.1. Введем величину a= х. В соответствии со свойствами Пуассоновского распределения при оно стремится к нормальному. Поэтому для больших а для вычисления Р{Х(а)меньше, либо равно n}, где Х(а) – случайная величина распределенная по Пуассону с матожиданием а можно воспользоваться следующим приближенным равенством:

2.3.2. Еще одно свойство простейшего потока связано со следующей теоремой:

Теорема: При показательном распределении интервала времени между требованиями Т, независимо от того, сколько он длился, оставшаяся его часть имеет тот же закон распределения.

Доказательство: пусть Т распределено по показательному закону: Предположим, что промежуток а уже длился некоторое время а< Т. Найдем условный закон распределения оставшейся части промежутка Т 1 =Т-а

F a (x)=P(T-ax)

По теореме умножения вероятностей:

P((T>a)(T-az) P(T-aa)=P(T>a) F a (z).

Отсюда,

равносильно событию а, для которого P(а; с другой стороны

P(T>a)=1-F(a), таким образом

F a (x)=(F(z+a)-F(a))/(1-F(a))

Отсюда, учитывая (3):

Этим свойством обладает только один вид потоков – простейшие пуассоновские.

Рассмотрим некоторую физическую систему S с дискретными состояниями которая переходит из состояния в состояние под влиянием каких-то случайных событий, например, вызовы на телефонной станции, выходы строя (отказы) элементов аппаратуры, выстрелы, направленные по цели и т. д.

Будем себе это представлять так, будто события, переводящие систему из состояния в состояние, представляют собой какие-то потоки событий (потоки вызовов, потоки отказов, потоки выстрелов и т. д.).

Пусть система S с графом состояний, показанным на рис. 4.27, в момент t находится в состоянии S; и может перейти из него в состояние под влиянием какого-то пуассоновского потока событий с интенсивностью как только появляется первое событие этого потока, система мгновенно переходит (перескакивает) из S в Как мы знаем, вероятность этого перехода за элементарный промежуток времени (элемент вероятности перехода) равна . Таким образом, плотность вероятности перехода в непрерывной цепи Маркова представляет собой не что иное, как интенсивность потока событий, переводящего систему по соответствующей стрелке.

Если все потоки событий, переводящие систему S из состояния в состояние, пуассоновские (стационарные или нестационарные - безразлично), то процесс, протекающий в системе, будет марковским. Действительно, пуассоновский поток обладает отсутствием последействия, поэтому, при заданном состоянии системы в данный момент, ее переходы в другие состояния в будущем обусловлены только появлением каких-то событий в пуассоновских потоках, а вероятности появления этих событий не зависят от «предыстории» процесса.

В дальнейшем, рассматривая марковские процессы в системах с дискретными состояниями и непрерывным временем (непрерывные марковские цепи), нам удобно будет во всех случаях рассматривать переходы системы из состояния в состояние как происходящие под влиянием каких-то потоков событий, хотя бы в действительности эти события были единичными. Например, работающее техническое устройство мы будем рассматривать как находящееся под действием потока отказов, хотя фактически оно может отказать только один раз. Действительно, если устройство отказывает в тот момент, когда приходит первое событие потока, то совершенно все равно - продолжается после этого поток отказов или же прекращается: судьба устройства от этого уже не зависит. Для нас же будет удобнее иметь дело именно с потоками событий.

Итак, рассматривается система S, в которой переходы из состояния в состояние происходят под действием пуассоновских потоков событий с определенными интенсивностями. Проставим эти интенсивности (плотности вероятностей переходов) на графе состояний системы у соответствующих стрелок.

Получим размеченный граф состояний (рис. 4.27); по которому, пользуясь правилом, сформулированным в § 3, можно сразу записать дифференциальные уравнения Колмогорова для вероятностей состояний.

Пример 1. Техническая система S состоит из двух узлов: I и II; каждый из них независимо от другого может отказывать (выходить из строя). Поток отказов первого узла - пуассоновский, с интенсивностью второго - также пуассоновский, с интенсивностью Каждый узел сразу после отказа начинает ремонтироваться (восстанавливаться). Поток восстановлений (окончаний ремонта ремонтируемого узла) для обоих узлов - пуассоновский с интенсивностью К.

Составить граф состояний системы и написать уравнения Колмогорова для вероятностей состояний. Определить, при каких начальных условиях нужно решать эти уравнения, если в начальный момент система работает исправно.

Решение. Состояния системы:

Оба узла неправды,

Первый узел ремонтируется, второй исправен,

Первый узел исправен, второй ремонтируется,

Оба узла ремонтируются.

Размеченный граф состояний системы показан на рис. 4.28.

Интенсивности потоков событий на рис. 4.28 проставлены из следующих соображений. Если система S находится в состоянии то на нее действуют два потока событий: поток неисправностей узла I с интенсивностью X, переводящий ее в состояние и поток неисправностей узла II с интенсивностью переводящий ее в Пусть теперь система находится в состоянии (узел I ремонтируется, узел II - исправен). Из этого состояния система может, во-первых, вернуться в (это происходит под действием потока восстановлений с интенсивностью ); во-вторых, - перейти в состояние (когда ремонт узла I еще не закончен, а узел II тем временем вышел из строя); этот переход происходит под действием потока отказов узла II с интенсивностью Интенсивности потоков у остальных стрелок проставляются аналогично.

Обозначая вероятности состояний и пользуясь правилом, сформулированным в § 3, запишем уравнения Колмогорова для вероятностей состояний:

Начальные условия, при которых нужно решать эту систему: при

Заметим, что, пользуясь условием

можно было бы уменьшить число уравнений на одно. Действительно, любую из вероятностей можно выразить через остальные и подставить в уравнения (6.1), а уравнение, содержащее в левой части производную чтой вероятности - отбросить.

Заметим, кроме того, что уравнения (6.1) справедливы как для постоянных интенсивностей пуассоновских потоков X, так и для переменных:

Пример 2. Группа в составе пяти самолетов в строю «колонна» (рис. 4.29) совершает налет на территорию противника. Передний самолет (ведущий) является постановщиком помех; до тех пор, пока он не сбит, идущие за ним самолеты не могут быть обнаружены и атакованы средствами ПВО противника. Атакам подвергается только постановщик помех. Поток атак - пуассоновский, с интенсивностью X (атак/час). В результате атаки постановщик помех поражается с вероятностью р.

Если постановщик помех поражен (сбит), то следующие за ним самолеты обнаруживаются и подвергаются атакам ПВО; на каждый из них (до тех пор, пока он не поражен) направляется пуассоновский поток атак с интенсивностью X; каждой атакой самолет поражается с вероятностью р. Когда самолет поражен, атаки по нему прекращаются, но на другие самолеты не переносятся.

Написать уравнения Колмогорова для вероятностей состояний системы и указать начальные условия.

Решение. Будем нумеровать состояния системы соответственно числу сохранившихся самолетов в группе:

Все самолеты целы;

Постановщик помех сбит, остальные самолеты целы;

Постановщик помех и один бомбардировщик сбиты, остальные самолеты целы;

Постановщик помех и два бомбардировщика сбиты, остальные самолеты целы;

Постановщик помех и три бомбардировщика сбиты, один самолет цел;

Все самолеты сбиты.

Состояния мы отличаем друг от друга по числу сохранившихся бомбардировщиков, а не по тому, какой именно из них сохранился, так как все бомбардировщики по условиям задачи равноценны - атакуются с одинаковой интенсивностью и поражаются с одинаковой вероятностью.

Граф состояний системы показан на рис. 4 30. Чтобы разметить этот граф, определим интенсивности потоков событий, переводящих систему из состояния в состояние.

Из состояния систему переводит поток поражающих (или «успешных») атак, т. е. тех атак, которые приводят к поражению постановщика (разумеется, если он раньше не был поражен).

Интенсивность потока атак равна X, но не все они - поражающие: каждая из них оказывается поражающей только с вероятностью . Очевидно, интенсивность потока поражающих атак равна эта интенсивность и проставлена в качестве у первой слева стрелки на графе (рис. 4.30).

Займемся следующей стрелкой и найдем интенсивность Система находится в состоянии т. е., целы и могут быть атакованы четыре самолета. Она перейдет в состояние за время если за это время какой-нибудь из самолетов (все равно, какой) будет сбит. Найдем вероятность противоположного события - за время ни один самолет не будет сбит:

Здесь отброшены члены высшего порядка малости относительно Вычитая эту вероятность из единицы, получим вероятность перехода из за время (элемент вероятности перехода):

что и проставлено у второй слева стрелки. Заметим, что интенсивность этого потока событий просто равна сумме интенсивностей потоков поражающих атак, направленных на отдельные самолеты Рассуждая наглядно, можно получить этот вывод следующим образом: система S в состоянии состоит из четырех самолетов; на каждый из них действует поток поражающих атак с интенсивностью значит на систему в целом действует суммарный поток поражающих атак с интенсивностью

Решение. Размеченный граф состояний показан на рис. 4.31.

Уравнения Колмогорова!

Начальные условия же, что и в примере 2.

Отметим, что в данном параграфе мы только выписывали дифференциальные уравнения для вероятностей состояний, но не занимались решением этих уравнений.

По этому поводу можно заметить следующее. Уравнения для вероятностей состояний представляют собой линейные дифференциальные уравнения с постоянными или переменными коэффициентами - в зависимости от того, постоянны или переменны интенсивности потоков событий, переводящих систему из состояния в состояние.

Система нескольких линейных дифференциальных уравнений такого типа только в редких случаях может быть проинтегрирована в квадратурах: обычно такую систему приходится решать численно - либо вручную, либо на аналоговой вычислительной машине (АВМ), либо, наконец, на ЭЦВМ. Все эти способы решения систем дифференциальных уравнений затруднений не доставляют; поэтому самое существенное - уметь записать систему уравнений и сформулировать для нее начальные условия, чем мы и ограничились здесь.


Этот термин используют, как правило, в теории массового обслуживания.


Математическая энциклопедия. - М.: Советская энциклопедия . И. М. Виноградов . 1977-1985 .

Смотреть что такое "ПУАССОНОВСКИЙ ПОТОК" в других словарях:

    Пуассоновский поток - см. Поток требований (заявок) … Экономико-математический словарь

    То же, что Пуассоновский процесс. Этот термин используют, как правило, в массового обслуживания теории (См. Массового обслуживания теория) … Большая советская энциклопедия

    поток требований - поток заявок входящий поток В теории массового обслуживания последовательность требований или заявок, поступающих на пункт обслуживания (канал, станцию, прибор и т.д.). Они возникают случайно и требуют определенного, обычно заранее точно не… …

    Поток событий последовательность событий, которые наступают в случайные моменты времени. Свойства Свойство стационарности: вероятность появления k событий на любом промежутке времени зависит только от числа k и от длительности t промежутка… … Википедия

    В теории случайных процессов описывает количество наступивших случайных событий, происходящих с постоянной интенсивностью. Содержание 1 Определение 1.1 Простой Пуассоновский процесс … Википедия

    пуассоновский входящий поток - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN exponential arrivals … Справочник технического переводчика

    Случайный процесс X(t).с независимыми приращениями X(t2) X(t1), t2>tl имеющими Пуассона распределение. В однородном П. п. для любых t2 > t1 (1) Коэффициент l>0 наз. интенсивностью пуассоновского процесса X(t). Траектории П. п. X(t).… … Математическая энциклопедия

    Случайный процесс, описывающий моменты наступления 0 Большая советская энциклопедия

    Случайная последовательность моментов времени, в к рые происходят события нек рого потока событий (напр., потока вызовов, приходящих на телефонную станцию), удовлетворяющая условию независимости и одинаковой показательной распределенности… … Математическая энциклопедия

    - (теория очередей) раздел теории вероятностей, целью исследований которого является рациональный выбор структуры системы обслуживания и процесса обслуживания на основе изучения потоков требований на обслуживание, поступающих в систему и выходящие… … Википедия

ординарность (в каждый момент времени в СМО может пос­тупать не более одной заявки). Ординарность потока означает, что вероятность попадания на элементарный участок Dt двух или более событий пренебрежимо мала по сравнению с вероятностью попадания на него ровно одного события, т.е. при Dt->0 эта вероятность представляет собой бесконечно малую высшего порядка.

В каждый момент времени в СМО может пос­тупать не более одной заявки

Примерами ординарных потоков событий могут служить поток деталей, поступающих на конвейер для сборки, поток отказов технического устройства, поток автомашин, прибывающих на станцию техобслуживания. Примером неординарного потока может служить поток пассажиров, прибывающих в лифте на данный этаж.

Для ординарного потока можно пренебречь возможностью совместного появления на элементарном участке двух и более событий. В каждый момент времени в СМО может пос­тупать не более одной заявки

отсутствие последействия - для любых не перекрывающихся участков времени T 1 ,T 2 ,…,T n числа событий Х 1 =Х(t 1 ,T 1),Х 2 =Х(t 2 ,T 2),…., Х n = Х(t n ,T n), попадающих на эти участки, представляют собой независимые случайные величины, т.е. вероятность попадания любого числа событий на один из участков не зависит от того, сколько их попало на другие.

Отсутствие последействия означает, что для любого момента времени t0, будущие моменты наступления события потока (при t>t0) не зависят от того, в какие моменты наступали события в прошлом (при t

Ординарный поток событий, в котором отсутствует последействие, называется пуассоновским потоком.

Стационарность

Поток событий называется стационарным, если все его вероятностные характеристики не меняются со временем. В частности, для стационарного потока событий вероятность попадания того или иного числа событий на участок длины T

зависит только от длины этого участка и не зависит от того, где именно на оси времени 0t этот участок расположен.

Это значит, что числа событий Х 1 (t 1 , T) и Х 2 (t 2 , T), попадающих на два участка одинаковой длины T, будут иметь одинаковые распределения. Отсюда следует, в частности, что для стационарного потока событий его интенсивность l(t) постоянна:

l(t) = l = const

Поток событий, обладающий всеми тремя свойствами, называется простейшим (или стационарным пуассоновским потоком).

Кроме того, к достоинствам простейшего потока можно так­же отнести следующее:

а) Сумма N независимых, ординарных и стационарных пото­ков заявок с интенсивностями сходится к простейшему потоку с интенсивностью , при условии, что складываемые потоки оказывают более или ме­нее одинаково малое влияние на суммарный поток;

б) Поток заявок, полученный путем случайного разрежения
исходного потока, когда каждая заявка с определенной
вероятностью p исключается из потока независимо от того, исключены другие заявки или нет, образует простейший поток с интенсивностью , где - интенсивность исходного потока. В отношении исходного потока заявок делается предположение лишь об ординарности и стационар­ности.

Поток с ограниченным последействием (рекуррентный поток) – поток, у которого случайные интервалы t1, t2,…, tn между соседними по времени событиями представляют собой независимые случайные величины. При его моделировании применяется последовательная (рекуррентная процедура): сначала разыгрывается величина t1, затем t2 и т.д. Например, последовательность вызовов такси.